注意:代码是基于 这篇博客 进行修改
修改内容:
1. 修改部分可能报错的代码。
2. 源代码只能每张图片增强一次,新增多批自动生成模块。
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import cv2
import albumentations as A
import xml.etree.ElementTree as ET
# 定义类
class VOCAug(object):
def __init__(self,
pre_image_path=None,
pre_xml_path=None,
aug_image_save_path=None,
aug_xml_save_path=None,
start_aug_id=None,
labels=None,
max_len=4, # 修改数值可以改变名字 1-1, 2-01, 3-001, 4-0001
is_show=False):
"""
:param pre_image_path:
:param pre_xml_path:
:param aug_image_save_path:
:param aug_xml_save_path:
:param start_aug_id:
:param labels: 标签列表, 展示增强后的图片用
:param max_len:
:param is_show:
"""
self.pre_image_path = pre_image_path
self.pre_xml_path = pre_xml_path
self.aug_image_save_path = aug_image_save_path
self.aug_xml_save_path = aug_xml_save_path
self.start_aug_id = start_aug_id
self.labels = labels
self.max_len = max_len
self.is_show = is_show
print(self.labels)
assert self.labels is not None, "labels is None!!!"
# 数据增强选项
self.aug = A.Compose([
A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.5), # 随机亮度对比度
# A.RandomBrightness(limit=0.3, p=0.5),
A.GaussianBlur(p=0.7), # 高斯模糊
A.GaussNoise(var_limit=(400, 450),mean=0,p=1), # 高斯噪声
# A.CLAHE(clip_limit=2.0, tile_grid_size=(4, 4), p=0.5), # 直方图均衡
# A.Equalize(p=0.5), # 均衡图像直方图
A.Rotate(limit=90, interpolation=0, border_mode=0, p=1), # 旋转
# A.RandomRotate90(p=1),
# A.CoarseDropout(p=0.5), # 随机生成矩阵黑框
# A.OneOf([
# # A.RGBShift(r_shift_limit=50, g_shift_limit=50, b_shift_limit=50, p=0.5), #RGB图像的每个通道随机移动值
# # A.ChannelShuffle(p=0.3), # 随机排列通道
# # A.ColorJitter(p=0.3), # 随机改变图像的亮度、对比度、饱和度、色调
# # A.ChannelDropout(p=0.3), # 随机丢弃通道
# ], p=0.5),
# A.Downscale(p=0.1), # 随机缩小和放大来降低图像质量
# A.Emboss(p=0.2), # 压印输入图像并将结果与原始图像叠加
],
# voc: [xmin, ymin, xmax, ymax] # 经过归一化
# min_area: 表示bbox占据的像素总个数, 当数据增强后, 若bbox小于这个值则从返回的bbox列表删除该bbox.
# min_visibility: 值域为[0,1], 如果增强后的bbox面积和增强前的bbox面积比值小于该值, 则删除该bbox
A.BboxParams(format='pascal_voc', min_area=0., min_visibility=0., label_fields=['category_id'])
)
print('--------------*--------------')
print("labels: ", self.labels)
if self.start_aug_id is None:
self.start_aug_id = len(os.listdir(self.pre_xml_path)) + 1
print("the start_aug_id is not set, default: len(images)", self.start_aug_id)
print('--------------*--------------')
def get_xml_data(self, xml_filename):
with open(os.path.join(self.pre_xml_path, xml_filename), 'r') as f:
tree = ET.parse(f)
root = tree.getroot()
image_name = xml_filename[:-4] + ".jpg"
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
bboxes = []
cls_id_list = []
for obj in root.iter('object'):
# difficult = obj.find('difficult').text
difficult = obj.find('difficult').text
cls_name = obj.find('name').text # label
if cls_name not in LABELS or int(difficult) == 1:
continue
xml_box = obj.find('bndbox')
xmin = int(xml_box.find('xmin').text)
ymin = int(xml_box.find('ymin').text)
xmax = int(xml_box.find('xmax').text)
ymax = int(xml_box.find('ymax').text)
# 标注越界修正
if xmax > w:
xmax = w
if ymax > h:
ymax = h
bbox = [xmin, ymin, xmax, ymax]
bboxes.append(bbox)
cls_id_list.append(self.labels.index(cls_name))
# 读取图片
image = cv2.imread(os.path.join(self.pre_image_path, image_name))
return bboxes, cls_id_list, image, image_name
def aug_image(self):
xml_list = os.listdir(self.pre_xml_path)
cnt = self.start_aug_id
for xml in xml_list:
file_suffix = xml.split('.')[-1]
if file_suffix not in ['xml']:
continue
bboxes, cls_id_list, image, image_name = self.get_xml_data(xml)
anno_dict = {'image': image, 'bboxes': bboxes, 'category_id': cls_id_list}
# 获得增强后的数据 {"image", "bboxes", "category_id"}
augmented = self.aug(**anno_dict)
# 保存增强后的数据
flag = self.save_aug_data(augmented, image_name, cnt)
if flag:
cnt += 1
else:
continue
def save_aug_data(self, augmented, image_name, cnt):
aug_image = augmented['image']
aug_bboxes = augmented['bboxes']
aug_category_id = augmented['category_id']
# print(aug_bboxes)
# print(aug_category_id)
name = '0' * self.max_len
# 获取图片的后缀名
image_suffix = image_name.split(".")[-1]
# 未增强对应的xml文件名
pre_xml_name = image_name.replace(image_suffix, 'xml')
# 获取新的增强图像的文件名
cnt_str = str(cnt)
length = len(cnt_str)
new_image_name = name[:-length] + cnt_str + "." + image_suffix
# 获取新的增强xml文本的文件名
new_xml_name = new_image_name.replace(image_suffix, 'xml')
# 获取增强后的图片新的宽和高
new_image_height, new_image_width = aug_image.shape[:2]
# 深拷贝图片
aug_image_copy = aug_image.copy()
# 在对应的原始xml上进行修改, 获得增强后的xml文本
with open(os.path.join(self.pre_xml_path, pre_xml_name), 'r') as pre_xml:
aug_tree = ET.parse(pre_xml)
# 修改image_filename值
root = aug_tree.getroot()
aug_tree.find('filename').text = new_image_name
# 修改变换后的图片大小
size = root.find('size')
size.find('width').text = str(new_image_width)
size.find('height').text = str(new_image_height)
# 修改每一个标注框
for index, obj in enumerate(root.iter('object')):
obj.find('name').text = self.labels[aug_category_id[index]]
xmin, ymin, xmax, ymax = aug_bboxes[index]
xml_box = obj.find('bndbox')
xml_box.find('xmin').text = str(int(xmin))
xml_box.find('ymin').text = str(int(ymin))
xml_box.find('xmax').text = str(int(xmax))
xml_box.find('ymax').text = str(int(ymax))
if self.is_show:
tl = 2
text = f"{LABELS[aug_category_id[index]]}"
t_size = cv2.getTextSize(text, 0, fontScale=tl / 3, thickness=tl)[0]
cv2.rectangle(aug_image, (int(xmin), int(ymin) - 3),
(int(xmin) + t_size[0], int(ymin) - t_size[1] - 3),
(0, 0, 255), -1, cv2.LINE_AA) # filled
cv2.putText(aug_image, text, (int(xmin), int(ymin) - 2), 0, tl / 3, (255, 255, 255), tl,
cv2.LINE_AA)
cv2.rectangle(aug_image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 0), 2)
if self.is_show:
cv2.imshow('aug_image_show', aug_image_copy)
# 按下s键保存增强,否则取消保存此次增强
key = cv2.waitKey(0)
if key & 0xff == ord('s'):
pass
else:
return False
# 保存增强后的图片
cv2.imwrite(os.path.join(self.aug_image_save_path, new_image_name), aug_image)
# 保存增强后的xml文件
tree = ET.ElementTree(root)
tree.write(os.path.join(self.aug_xml_save_path, new_xml_name))
return True
# 原始的xml路径和图片路径
PRE_IMAGE_PATH = r'C:\Users\Administrator\Desktop\AA\images'
PRE_XML_PATH = r'C:\Users\Administrator\Desktop\AA\labels'
# 增强后保存的xml路径和图片路径
AUG_SAVE_IMAGE_PATH = r'C:\Users\Administrator\Desktop\AA\images-aug'
AUG_SAVE_XML_PATH = r'C:\Users\Administrator\Desktop\AA\labels-aug'
# 标签列表
LABELS = ["apple"]
c = len(os.listdir(PRE_IMAGE_PATH))
#生成几批照片
for i in range(4):
aug = VOCAug(
pre_image_path=PRE_IMAGE_PATH,
pre_xml_path=PRE_XML_PATH,
aug_image_save_path=AUG_SAVE_IMAGE_PATH,
aug_xml_save_path=AUG_SAVE_XML_PATH,
start_aug_id=c*i,
labels=LABELS,
is_show=False,
)
aug.aug_image()
# cv2.destroyAllWindows()