【车道线检测】Hough变换视频车道线检测 【含Matlab源码 274期】

⛄一、Hough变换图片车道线检测简介

1 引言
随着人们生活水平的提高, 科技的不断进步, 智能驾驶技术逐渐受到了研究者们的广泛研究和关注。先进驾驶辅助系统 (Advanced Driver Assistance System, 简称ADAS) 是智能驾驶技术的一个分支, 即通过某种形式的传感器了解周围的环境, 以协助驾驶员操作 (辅助司机) 或完全控制车辆 (实现自动化) , 达到提高车辆安全驾驶的目的。车道线检测作为ADAS的重要组成部分, 能够为系统确定车辆所在车道位置, 并提供车道偏离预警决策依据。目前主要通过在车内安装摄像头, 利用图像处理算法实时获取视频图像进行车道线检测, 但现实行车环境复杂, 比如存在视角遮挡、道路阴影、道路裂痕以及邻近车辆压线干扰等情况, 以至于车道线不易提取且容易造成误检、漏检, 因此如何实时、准确地检测出车道线具有重要的研究意义。

目前, 国内外众多学者对车道线检测进行了深入的研究并提出了一系列检测方法, 基于计算机视觉的车道线检测主要可以分为基于车道线特征和模型两类方法。基于车道线特征的检测方法主要是根据标志线的纹理、边缘以及颜色等特征来提取车道线, 杨智杰等人[7]基于图像的RGB颜色信息检测车道线, 但是当视野中其他物体的颜色与车道线颜色相近时, 容易造成车道线误检。基于模型的方法则是通过计算车道线模型的几何特征参数进而实现车道线检测, 通常分为直线和曲线两种车道线模型。王宝锋等人通过B-样条曲线对弯道车道线进行检测, 陈家凡提出采用远近景将图像分割, 远景视场通过曲线拟合车道线, 但基于曲线车道模型的车道线检测通常计算过程复杂, 时间成本高。Qian等人基于Hough变换进行的车道线检测, 但是该方法在恶劣环境使得车道线不易提取。陈军等人在概率Hough的基础上进行车道线检测, 该算法虽然优于标准的Hough变换, 但准确率还有待提高。以上基于传统Hough变换或者改进后的Hough变换方法能够完成部分车道线的提取, 但同时存在车道线漏检、误检的情况, 且检测结果受行车环境、车道线完好程度以及行驶时段影响较大, 且路面污渍、邻近车道车辆超越、同车道前车干扰以及路面反光“泛白”都会对车道线检测算

你可能感兴趣的:(Matlab图像处理(进阶版),matlab,音视频,图像处理)