STM32+W5500实现以太网通信

STM32系列32位微控制器基于Arm® Cortex®-M处理器,旨在为MCU用户提供新的开发自由度。它包括一系列产品,集高性能、实时功能、数字信号处理、低功耗/低电压操作、连接性等特性于一身,同时还保持了集成度高和易于开发的特点。本例采用STM32作为MCU。

W5500是一款全硬件TCP/IP嵌入式以太网控制器,为嵌入式系统提供了更加简洁的互联网方案。W5500集成了TCP/IP协议栈,10/100M以太网数据链路层(MAC)以及物理层(PHY)。全硬件实现的TCP/IP协议栈支持TCP,UDP,IPv4,ICMP,ARP,IGMP以及PPPoE协议。W5500内嵌32K字节片上缓存以供以太网包处理,用户可以同时使用8个硬件Socket独立通信。W5500使用了高效的SPI协议支持80MHz速率,解决系统通信瓶颈,更好地实现高速网络通信。

文章目录

概念说明

实现原理

嵌入式程序 

底层通用接口

W5500抽象接口

官网例程补充说明


概念说明

  • SPI:Serial Peripheral interface是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线。SPI分为主、从两种模式,一个SPI通讯系统需要包含一个(且只能是一个)主设备,一个或多个从设备。这里STM32为主设备(Master)提供时钟,W5500为从设备(Slave)。SPI接口一般使用四条信号线通信:SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)
    • MISO:主设备输入/从设备输出引脚。该引脚在从模式下发送数据,在主模式下接收数据。
    • MOSI:主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。
    • SCLK:主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。
    • CS/SS:主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。从设备片选信号,由主设备控制。它的功能是用来作为“片选引脚”,也就是选择指定的从设备,让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。STM32+W5500实现以太网通信_第1张图片
  • TCP/IP协议:TCP/IP协议是Internet互联网最基本的协议,其在一定程度上参考了七层ISO模型。OSI模型共有七层,在TCP/IP协议中,七层被简化为了四个层次。TCP/IP模型中的各种协议,依其功能不同,被分别归属到这四层之中,常被视为是简化过后的七层OSI模型。 W5500实现的部分为红框部分:STM32+W5500实现以太网通信_第2张图片
  •  Socket:在计算机通信领域,socket 被翻译为“套接字”,它是计算机之间进行通信的一个虚拟通道描述符,一个socket对应着网络通信的一扇门。
  • 网络参数:网络通信需要的参数有很多,我这里介绍一下我们常见的:
    • IP地址:Internet Protocol Address是指互联网协议地址,两台通过IP协议通信的机器通过IP地址寻找对方,子网掩码配合IP地址能得到对端IP地址是在本地子网,还是需要发送至网关进行路由发送至广域网。
    • MAC地址:Media Access Control 地址是制造商为网络硬件 (如无线网卡或以太网网卡)分配的唯一代码。MAC地址作为数据链路设备的地址标识符,ARP协议局域网寻址使用MAC地址。
    • 网络端口号:网络中的计算机是通过IP地址来代表其身份的,它只能表示某台特定的计算机,但是一台计算机上可以同时提供很多服务,比如常见的端口号21表示的是FTP服务。端口号是socket的属性之一。
    • DNS/DHCP/网关:网关作为局域网的一个出口可以将报文转发至广域网中,DNS服务器提供域名解析功能,DHCP服务器提供局域网IP地址管理功能。

 

实现原理

嵌入式程序跑在STM32微控制器,通过片上SPI控制器与W5500进行通信,配置所需网络参数并与远端服务器建立链接(TCP客户端)之后发送接收数据;又或者是建立服务器(TCP服务器)等待建立链接之后收发数据。抑或是不用建立连接直接发送报文(UDP)。PHY信号变压之后通过RJ45接口收发至网线。原理示意图如下:

STM32+W5500实现以太网通信_第3张图片


嵌入式程序 

嵌入式程序分两个部分,第一部分是一些底层通用接口。第二部分W5500抽象供上层调用的接口。

底层通用接口

这部分实现主要包括IO口控制器初始化,以及MCU不同位宽配置芯片接口和Socket批量发送接收数据接口,代码片如下(中文注释帮助您更好的理解实现):

//IO口控制器初始化
uint8 w55_IoInit(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;
  SPI_InitTypeDef    SPI_InitStructure;
  RCC_APB2PeriphClockCmd(SPI_CS_RCC|SPI_SCLK_RCC|SPI_SO_RCC|SPI_SI_RCC|W5500_RESET_RCC|LINK_RCC|RCC_APB2Periph_AFIO,ENABLE);
  
	/*使能AFIO时钟*/
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);   
	/*只保留SWD模式*/
  GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);   
                    
  RCC_APB1PeriphClockCmd(W5500_SPI_CLK ,ENABLE);
  GPIO_StructInit(&GPIO_InitStructure);
  GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_Out_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;	
  GPIO_InitStructure.GPIO_Pin   = W5500_RESET_pin;
  GPIO_Init(W5500_RESET_GPIO, &GPIO_InitStructure);
                          
  GPIO_StructInit(&GPIO_InitStructure);
  GPIO_InitStructure.GPIO_Pin =SPI_CS_pin;
  GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(SPI_CS_GPIO, &GPIO_InitStructure);
  GPIO_SetBits(SPI_CS_GPIO,SPI_CS_pin);
 
  GPIO_StructInit(&GPIO_InitStructure);
  GPIO_InitStructure.GPIO_Pin =SPI_SCLK_pin|SPI_SI_pin|SPI_SO_pin;
  GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(SPI_SCLK_GPIO, &GPIO_InitStructure);
	GPIO_SetBits(SPI_SCLK_GPIO,SPI_SCLK_pin|SPI_SI_pin|SPI_SO_pin);

  RCC_APB1PeriphClockCmd(LINK_RCC ,ENABLE);
  GPIO_StructInit(&GPIO_InitStructure);
  GPIO_InitStructure.GPIO_Pin = LINK_pin;
  GPIO_InitStructure.GPIO_Mode= GPIO_Mode_IPU;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(LINK_GPIO, &GPIO_InitStructure);
	
	

	SPI_InitStructure.SPI_Direction=SPI_Direction_2Lines_FullDuplex;
	SPI_InitStructure.SPI_Mode=SPI_Mode_Master;									
	SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;						
	SPI_InitStructure.SPI_CPOL=SPI_CPOL_Low;										
	SPI_InitStructure.SPI_CPHA=SPI_CPHA_1Edge;										
	SPI_InitStructure.SPI_NSS=SPI_NSS_Soft;											
	SPI_InitStructure.SPI_BaudRatePrescaler=SPI_BaudRatePrescaler_2;		
	SPI_InitStructure.SPI_FirstBit=SPI_FirstBit_MSB;							
	SPI_InitStructure.SPI_CRCPolynomial=7;												
	SPI_Init(W5500_SPI, &SPI_InitStructure); 
	SPI_Cmd(W5500_SPI,ENABLE);
	return 1;
}

//spi发送一个字节
void SPI_Send_Byte(unsigned char dat)
{
	while (SPI_I2S_GetFlagStatus(W5500_SPI, SPI_I2S_FLAG_TXE) == RESET); 
	SPI_I2S_SendData(W5500_SPI, dat);
}
//spi接收一个字节
unsigned char SPI_Recv_Byte(void)
{
	return (uint8)(SPI_I2S_ReceiveData(W5500_SPI));
}
//spi发送两个字节
void SPI_Send_Short(unsigned short dat)
{
	SPI_Send_Byte(dat/256);
	SPI_Send_Byte(dat);	
}
//通过spi向指定地址寄存器写n个字节数据
uint8 w55_WritenByte(uint16 reg, uint8 *dat_ptr, uint16 size)
{
	unsigned short i;

	GPIO_ResetBits(W5500_SCS_PORT, W5500_SCS);	
		
	SPI_Send_Short(reg);
	SPI_Send_Byte(VDM|RWB_WRITE|COMMON_R);

	for(i=0;i

W5500抽象接口

这部分主要实现了芯片以及Socket初始化,模拟中断处理循环函数等,示例使用Socket0实现TCP客户端,您可以在此代码基础上增加配置别的Socket实现TCP服务器以及UDP等。代码片(会有中文注释帮助您更好地理解程序)如下,你会通过这部分代码片体会到C51单片机程序的编程风格(尤其是开始的两个接口):

//从Socket接收数据缓存区读取数据
uint16 w55_ReadSockToBuffer(SOCKET s, uint8 *dat_ptr)
{
    unsigned short rx_size;
	unsigned short offset, offset1;
	unsigned short i;
	unsigned char j;

	rx_size=w55_ReadSock2Byte(s,W5500_Sn_RX_RSR);
	if(rx_size==0) return 0;//没接收到数据则返回
	if(rx_size>S_RX_SIZE) rx_size=S_RX_SIZE;		
	offset=w55_ReadSock2Byte(s,W5500_Sn_RX_RD);
	offset1=offset;
	offset&=(S_RX_SIZE-1);//计算实际的物理地址

	GPIO_ResetBits(W5500_SCS_PORT, W5500_SCS);

	SPI_Send_Short(offset);//写16位地址
	SPI_Send_Byte(VDM|RWB_READ|(s*0x20+0x18));//写控制字节,N字节数据长度,读数据,选择端口
	j=SPI_Recv_Byte();
	if((offset+rx_size)


官网例程补充说明

W5500官网提供了包括开发板,原理图,以及参考代码和常见问题与技术服务等。参考代码又针对STM32,DSP,C8051以及基于操作系统分别提供了作为TCP客户端/服务器,UDP收发等例程。下面我们对STM32F407+W5500例程中的W5500作为TCP客户端工程进行简单的分析,具体代码可以去官网下载,我这边就不贴了。

工程中包含了DHCP/DNS客户端的实现代码,示例中并没有使用,我也就不详述了,有兴趣的可以去看看。W5500.c包含了主要的驱动实现,包含所有寄存器的定义以及用以上层调用的初始化,建立连接,发送接收等接口。考虑到MCU可能不通过SPI控制器与W5500进行通信,W5500.c实现了注册平台提供的MCU与W5500直接数据交互的函数。下面是示例工程的流程图:

STM32+W5500实现以太网通信_第4张图片


十六宿舍 原创作品,转载必须标注原文链接。

©2023 Yang Li. All rights reserved.

欢迎关注 『十六宿舍』,大家喜欢的话,给个,更多关于嵌入式相关技术的内容持续更新中。

你可能感兴趣的:(MCU平台,stm32,单片机,嵌入式硬件)