代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列

647. 回文子串

题目:

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

思路:

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  1. 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++;
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  1. dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

  1. 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第1张图片

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
    for (int j = i; j < s.size(); j++) {
        if (s[i] == s[j]) {
            if (j - i <= 1) { // 情况一 和 情况二
                result++;
                dp[i][j] = true;
            } else if (dp[i + 1][j - 1]) { // 情况三
                result++;
                dp[i][j] = true;
            }
        }
    }
}
  1. 举例推导dp数组

举例,输入:“aaa”,dp[i][j]状态如下:

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第2张图片

图中有6个true,所以就是有6个回文子串。

代码:

class Solution {
    public int countSubstrings(String s) {
        boolean[][] dp = new boolean[s.length() + 1][s.length() + 1];
        int res = 0;
        for(int i = s.length() - 1; i >= 0; i--){
            for(int j = i; j < s.length(); j++){
                if(s.charAt(i) == s.charAt(j)){
                    if(j - i <= 2){
                        res++;
                        dp[i][j] = true;
                    }else if(dp[i + 1][j - 1]){
                        res++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return res;
    } 
}

516. 最长回文子序列

题目:

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

思路:

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  1. 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第3张图片

(如果这里看不懂,回忆一下dp[i][j]的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第4张图片

代码如下:

if (s[i] == s[j]) {
    dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  1. dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i + 1][j - 1] + 2 和 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 可以看出,dp[i][j]是依赖于dp[i + 1][j - 1] 和 dp[i + 1][j],

也就是从矩阵的角度来说,dp[i][j] 下一行的数据。 所以遍历i的时候一定要从下到上遍历,这样才能保证,下一行的数据是经过计算的

递推公式:dp[i][j] = dp[i + 1][j - 1] + 2,dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 分别对应着下图中的红色箭头方向,如图:

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第5张图片

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {
    for (int j = i + 1; j < s.size(); j++) {
        if (s[i] == s[j]) {
            dp[i][j] = dp[i + 1][j - 1] + 2;
        } else {
            dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
        }
    }
}
  1. 举例推导dp数组

输入s:“cbbd” 为例,dp数组状态如图:

代码随想录刷题Day57 | 647. 回文子串 | 516. 最长回文子序列_第6张图片

红色框即:dp[0][s.size() - 1]; 为最终结果。

代码:

class Solution {
    public int longestPalindromeSubseq(String s) {
        int[][] dp = new int[s.length() + 1][s.length() + 1];
        for(int i = s.length() - 1; i >= 0; i--){
            dp[i][i] = 1;
            for(int j = i + 1; j < s.length(); j++){
                if(s.charAt(i) == s.charAt(j)){
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                }else{
                    dp[i][j] = Math.max(Math.max(dp[i + 1][j], dp[i][j - 1]), dp[i][j]);
                }
            }
        }
        return dp[0][s.length() - 1];
    }
}

你可能感兴趣的:(代码随想录刷题,算法,动态规划,贪心算法)