代码随想录Day57|647.回文子串、516.最长回文子序列、动态规划总结篇

文章目录

  • 647.回文子串
  • 516.最长回文子序列
  • 动态规划总结篇

647.回文子串

文章讲解:代码随想录 (programmercarl.com)

题目链接:

题目:

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

分析:

  1. 确定dp数组(dp table)以及下标的含义

    布尔类型的dp[i] [j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i] [j]为true,否则为false。

  2. 确定递推公式

    在确定递推公式时,就要分析如下几种情况。

    整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

    当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

    当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

    • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
    • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
    • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1] [j - 1]是否为true。
  3. dp数组如何初始化

    所以dp[i] [j]初始化为false

  4. 确定遍历顺序

    优先遍历列,然后遍历行

  5. 举例推导dp数组

    647.回文子串1

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

516.最长回文子序列

文章讲解:代码随想录 (programmercarl.com)

题目链接:516. 最长回文子序列 - 力扣(LeetCode)

题目:

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: “bbbab” 输出: 4 一个可能的最长回文子序列为 “bbbb”。

示例 2: 输入:“cbbd” 输出: 2 一个可能的最长回文子序列为 “bb”。

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};

动态规划总结篇

文章讲解:代码随想录 (programmercarl.com)

动规五部曲分别为:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

你可能感兴趣的:(动态规划,算法)