树的重心算法

一 定义

树的重心就是使得这个重心的最大子树最小。

二 性质

  1. 一棵树最少有一个重心,如果有两个重心,那么这两个重心之间是有一条边相连的
  2. 在树上的所有点到重心的距离之和是最小的。
  3. 若以重心为根,那么所有子树的大小都不超过这个树大小的 1 2 \frac{1}{2} 21
  4. 在一个树上增加一个点,重心的最多平移一条边的距离
  5. 两棵树链接成一个新的树,那么这个新的树的重心是在这两个树的重心的连线上

三 重心的求解

在重心的求解中,我们可以通过遍历得到所有节点的最大子树,通过比较得到最小值。

void DFS(int now,int fa)
{
   size[now] = 1;
   weight[now] = 0;
   for(int i = head[now];i;i = E[i].next)
   {
       int to = E[i].to;
       if(to!=fa) DFS(to,now);
       else continue;
       size[now] += size[to];
       weight[now] = max(weight[now],size[to]);
   }
   weight[now] = max(weight[now], n - size[now]);
   if(weight[now] < Min) {
       Min = weight[now];
       ans = now;
   }
}

你可能感兴趣的:(数据结构,算法,机器学习,数据结构,树,ACM)