并行计算与分布式计算区别与联系

参考转载
http://blog.csdn.net/wm_1991/article/details/50257269
https://blog.csdn.net/BtB5e6Nsu1g511Eg5XEg/article/details/82976864

  1. 并行计算(Parallel Computing)

并行计算或称平行计算是相对于串行计算来说的。并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程。为执行并行计算,计算资源应包括一台配有多处理机(并行处理)的计算机、一个与网络相连的计算机专有编号,或者两者结合使用。并行计算的主要目的是快速解决大型且复杂的计算问题。

并行计算可以划分成时间并行和空间并行。时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题。以程序和算法设计人员的角度看,并行计算又可分为数据并行和任务并行。数据并行把大的任务化解成若干个相同的子任务,处理起来比任务并行简单。

空间上的并行导致两类并行机的产生,按照Michael Flynn(费林分类法)的说法分为单指令流多数据流(SIMD)和多指令流多数据流(MIMD),而常用的串行机也称为单指令流单数据流(SISD)。MIMD类的机器又可分为常见的五类:并行向量处理机(PVP)、对称多处理机(SMP)、大规模并行处理机(MPP)、工作站机群(COW)、分布式共享存储处理机(DSM)。

  1. 分布式计算(Distributed Computing)

分布式计算这个研究领域,主要研究分散系统(Distributed system)如何进行计算。分散系统是一组计算机,通过计算机网络相互链接与通信后形成的系统。把需要进行大量计算的工程数据分区成小块,由多台计算机分别计算,在上传运算结果后,将结果统一合并得出数据结论的科学。

目前常见的分布式计算项目通常使用世界各地上千万志愿者计算机的闲置计算能力,通过互联网进行数据传输。如分析计算蛋白质的内部结构和相关药物的Folding@home项目,该项目结构庞大,需要惊人的计算量,由一台电脑计算是不可能完成的。即使现在有了计算能力超强的超级电脑,但是一些科研机构的经费却又十分有限。

分布式计算比起其它算法具有以下几个优点:
  1、稀有资源可以共享。
  2、通过分布式计算可以在多台计算机上平衡计算负载。
  3、可以把程序放在最适合运行它的计算机上。其中,共享稀有资源和平衡负载是计算机分布式计算的核心思想之一。

  1. 并行计算与分布式计算的区别

(1)简单的理解,引用Answers.com上一个答案:

Parallel computing and distributed computing are ways of exploiting parallelism in computing to achieve higher performance. Multiple processing elements are used to solve a problem, either to have it done faster or to have a larger size problem been solved. To state simply, if the processing elements share the memory, it is called parallel computing, otherwise it is called distributed computing. Some have opinion that distributed computing is a special form of parallel computing.

并行计算与分布式计算都是运用并行来获得更高性能,化大任务为小任务。简单说来,如果处理单元共享内存,就称为并行计算,反之就是分布式计算。也有人认为分布式计算是并行计算的一种特例。

但是分布式的任务包互相之间有独立性,上一个任务包的结果未返回或者是结果处理错误,对下一个任务包的处理几乎没有什么影响。因此,分布式的实时性要求不高,而且允许存在计算错误(因为每个计算任务给好几个参与者计算,上传结果到服务器后要比较结果,然后对结果差异大的进行验证。

分布式要处理的问题一般是基于“寻找”模式的。所谓的“寻找”,就相当于穷举法!为了尝试到每一个可能存在的结果,一般从0~N( 某一数值)被一个一个的测试,直到我们找到所要求的结果。事实上,为了易于一次性探测到正确的结果,我们假设结果是以某个特殊形式开始的。在这种类型的搜索里,我们也许幸运的一开始就找到答案;也许不够走运以至于到最后才找到答案,这都很公平。

这么说,并行程序并行处理的任务包之间有很大的联系,而且并行计算的每一个任务块都是必要的,没有浪费的分割的,就是每个任务包都要处理,而且计算结果相互影响,就要求每个的计算结果要绝对正确,而且在时间上要尽量做到同步,而分布式的很多任务块可以根本就不处理,有大量的无用数据块,所以说分布式计算的速度尽管很快,但是真正的“效率”是低之再低 的,可能一直在寻找,但是永远都找不到,也可能一开始就找到了;而并行处理不同,它的任务包个数相对有限,在一个有限的时间应该是可能完成的。

分布式的编写一般用的是C++(也有用JAVA的,但是都不是主流),基本不用MPI接口。并行计算用MPI或者OpenMP。

你可能感兴趣的:(并行,分布式)