2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】

#2023美赛E题数据(持续更新)+支撑材料/参考文献+思路【持续更新】
更新日志:

  • 2.17 20点更新: 视频讲解,15篇支撑材料,7个数据集文档,2篇文字思路

获取:
2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第1张图片

下载

预览(部分,数据太多请下载后查看)

2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第2张图片
2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第3张图片
2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第4张图片
2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第5张图片
在这里插入图片描述

部分代码展示

data.sort_values(by='Date',inplace=True)
data.reset_index(inplace=True,drop=True)
data['rolling10']=data['Number of  reported results'].rolling(10).mean()

aa=[]
for i in range(data.shape[0]):
    if i%10==1:
        aa.append(1)
    else:
        aa.append(0)
    
data['aa']=aa
data=data[data['aa']==1]
data.dropna(inplace=True)
data.sort_values(by='Date')
data.reset_index(inplace=True,drop=True)

data

2023美赛E题数据(持续更新)+思路(视频讲解+文字思路)+支撑材料/参考文献【持续更新】_第6张图片




dataset=data['rolling10']

# 将整型变为float
dataset = dataset.astype('float32')
def mean_absolute_percentage_error(y_true, y_pred): 

    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.values.reshape(-1, 1))

 
def create_dataset(dataset, look_back):
#这里的look_back与timestep相同
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back):
        a = dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i + look_back])
    return numpy.array(dataX),numpy.array(dataY)


#训练数据太少 look_back并不能过大
look_back = 1
trainX,trainY  = create_dataset(dataset,look_back)

trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))

# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(None,1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# model.save(os.path.join("DATA","Test" + ".h5"))
# make predictions


你可能感兴趣的:(分享,python,机器学习,numpy)