- nlp遇到的问题
1.AttributeError:'CodeGenTokenizer'objecthasnoattribute'encoder'pipinstalltransformers==4.33.22.ImportError:Using`low_cpu_mem_usage=True`ora`device_map`requiresAccelerate:`pipinstallaccelerate`pipinst
- 【大模型】Transformer架构完全解读:从“盲人摸象“到“通晓万物“的AI进化论
全栈追梦人
大模型#提示工程transformer架构深度学习
Transformer架构完全解读:从"盲人摸象"到"通晓万物"的AI进化论——一位大模型探索者的技术日记☕第一章:为什么说Transformer是AI界的"蒸汽机革命"?1.1从RNN到Transformer:一场效率革命场景:咖啡厅里两位开发者的对话实习生小雨:“学长,为什么现在都用Transformer?RNN不是也能处理文本吗?”资深工程师老张:(掏出纸巾画图)“想象RNN是个严格的图书管
- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- 【学习】《算法图解》第七章学习笔记:树
程序员
前言在前面的章节中,我们学习了数组、链表、散列表等基本数据结构,以及一些基础算法。本章将介绍一种非常重要的数据结构——树(Tree),特别是二叉搜索树(BinarySearchTree)。树结构在计算机科学中应用广泛,从文件系统到数据库再到人工智能,都能看到树的身影。《算法图解》第七章深入浅出地介绍了树的基本概念、实现和应用,帮助读者理解这一关键数据结构。一、树的基本概念(一)什么是树树是一种分层
- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- 【学习】《算法图解》第七章学习笔记:树
自学也学好编程
程序人生
前言在前面的章节中,我们学习了数组、链表、散列表等基本数据结构,以及一些基础算法。本章将介绍一种非常重要的数据结构——树(Tree),特别是二叉搜索树(BinarySearchTree)。树结构在计算机科学中应用广泛,从文件系统到数据库再到人工智能,都能看到树的身影。《算法图解》第七章深入浅出地介绍了树的基本概念、实现和应用,帮助读者理解这一关键数据结构。一、树的基本概念(一)什么是树树是一种分层
- 核密度估计KDE和概率密度函数PDF(深入浅出)
赵孝正
深度学习数学基础pdfKDE
目录1.和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码结果解释解释结果总结2.概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画来解释解释这个图:问题解答:总结3.核密度估计(KDE)和概率密度函数(PDF)之间的关系故事开始:第一种方法:概率密度函数(PDF)第二种方法:核密度估计(KDE)总结一下:问题解答:1.和密度估
- 使用vllm部署 Nanonets-OCR-s
没刮胡子
软件开发技术实战专栏Linux服务器技术人工智能AIocrpython深度学习
使用vLLM部署Nanonets-OCR-s模型的完整指南Nanonets-OCR-s作为基于Qwen2.5-VL-3B的多模态OCR模型,结合vLLM的高效推理引擎可显著提升部署性能。一、环境准备与依赖安装1.安装vLLM与多模态依赖#安装vLLM(含CUDA加速)pipinstallvllm==0.3.21#建议使用稳定版本pipinstalltransformers==4.35
- LLaMA Factory 微调后,迁移模型
激进小猪1002
llamallamafactory人工智能python
方法1:使用HuggingFaceHub(最推荐)fromtransformersimportAutoModelForCausalLM,AutoTokenizer#在源服务器上保存模型到Hubmodel.push_to_hub("your-username/your-model-name")tokenizer.push_to_hub("your-username/your-model-name")
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- 大模型笔记10:LoRA微调
errorwarn
笔记
LoRA微调的原理矩阵的秩矩阵的秩代表一个矩阵中所含信息的大小。行秩:矩阵中互相不重复、不依赖(即线性无关)的行的最大数目。列秩:矩阵中互相不重复、不依赖的列的最大数目。事实上,行秩和列秩总是相等的,因此我们通常直接称之为“矩阵的秩”。Transformer中微调哪些参数:LoRA的改进版本
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- 深入浅出:KVM虚拟机连接LinuxBridge完全指南
来自于狂人
云计算
在虚拟化的世界里,网络连接如同现实世界的道路系统,而LinuxBridge就是那座关键的桥梁。本文将带你亲手搭建这座桥梁,让KVM虚拟机畅通无阻。一、核心概念:理解虚拟化网络的基石在动手配置前,我们需要理解几个关键概念:KVM(Kernel-basedVirtualMachine)基于Linux内核的完全虚拟化解决方案通过/dev/kvm接口直接使用硬件虚拟化扩展典型工具栈:libvirt+QEM
- LLM推理入门实践:基于 Hugging Face Transformers 和 vLLM
ctrl A_ctrl C_ctrl V
#大模型llmpython自然语言处理人工智能
文章目录1.HuggingFace模型下载2.HuggingFaceTransformers库模型推理3.关于prompt的组成:system、user、assistant4.vLLM模型推理vLLM的多卡推理踩坑1.HuggingFace模型下载模型在HuggingFace下载,如果下载速度太慢,可以在HuggingFace镜像网站或ModelScope进行下载。使用HuggingFace的下载
- 不用公式!用生活例子讲透Transformer,大模型为何强大
九章云极DataCanvas
技术干货人工智能
想象一下,你现在是个翻译员,手头有一本厚厚的英文书,要把它翻译成中文。这可不是个轻松活儿!以前的翻译方法(老派翻译官:RNNs)过去,我们的电脑(也就是老模型,比如RNNs)是这样翻译的:就像一个超级认真的翻译官,他会逐字逐句地读英文书。他读到一个英文词时,会琢磨这个词之前讲了什么,以及他到现在为止记住了多少内容,然后才决定怎么翻译。这种方法有两个大毛病:太慢,不能分工合作:就像一个翻译官,他必须
- GRU与Transformer结合:新一代序列模型
AI大模型应用工坊
grutransformer深度学习ai
GRU与Transformer结合:新一代序列模型关键词:GRU、Transformer、序列模型、结合、深度学习摘要:本文深入探讨了GRU与Transformer结合所形成的新一代序列模型。先介绍了GRU和Transformer各自的核心概念及工作原理,然后阐述了二者结合的原因、方式和优势。通过代码实际案例展示了如何搭建结合的模型,还探讨了其在自然语言处理、语音识别等领域的实际应用场景。最后对未
- 深入浅出ArkTS:HarmonyOS应用开发的新选择
vvilkin的学习备忘
#HarmonyOSharmonyos华为
在移动应用开发领域,选择合适的编程语言对开发效率和性能优化至关重要。随着华为HarmonyOS的崛起,ArkTS作为其官方推荐的应用开发语言,逐渐受到开发者关注。ArkTS基于TypeScript,融合了声明式UI、响应式编程等现代前端开发范式,同时针对HarmonyOS进行了深度优化。本文将全面介绍ArkTS的核心特性、语法基础、与TypeScript的异同,以及它在HarmonyOS生态中的应
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 【Python深入浅出⑮】一文搞懂Python3迭代器与生成器:从入门到实战
奔跑吧邓邓子
Python深入浅出python开发语言迭代器生成器
目录一、引言二、迭代器基础(一)迭代器的概念(二)迭代器的实现方法(三)创建迭代器示例三、生成器基础(一)生成器的概念(二)生成器的优点(三)创建生成器的方式四、迭代器与生成器的区别五、应用场景(一)迭代器的应用场景(二)生成器的应用场景六、注意事项与最佳实践(一)迭代器使用注意事项(二)生成器使用注意事项七、总结一、引言在Python编程的广阔天地中,迭代器与生成器犹如两颗璀璨的明星,它们不仅是
- PD分离与EP分离技术
静谧之心
LLMAI相关算力调度k8spd分离llmep专家并行kvcache
一、Prefill与Decode的底层原理剖析1.1Prefill阶段的数学本质(以Transformer架构为例)计算密集型的核心原因:#自注意力计算伪代码Q=X@W_Q#[batch,seq_len,d_model]→[batch,seq_len,d_k]K=X@W_K#O(n^2)复杂度开始显现V=X@W_Vattn=(
[email protected](-2,-1))/sqrt(d_k)#[bat
- Java如何导出word(根据模板生成),通过word转成pdf,放压缩包
R-sz
javawordpdf
com.deepoovepoi-tl1.10.0-betaorg.apache.poipoi4.1.2org.apache.poipoi-ooxml4.1.2org.apache.poipoi-scratchpad4.1.2com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-wor
- Storm核心概念与实战详解
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2010年Hadoop项目开源后,Storm项目也随之走向人气爆棚。在如此火热的当下,给我们带来的好处不仅仅是增强对Hadoop平台的掌控能力,更重要的是让我们感受到了快速发展、海量数据处理能力、低延迟的优势。在这一系列文章中,我将深入浅出地介绍Storm项目,并从实际案例出发,带领大家全面理解Storm中的关键概念及其运作方式,让您轻松掌握Storm的高效率、
- 使用Hugging Face的Sentence Transformers进行文本嵌入
2501_92325368
语言模型langchain
概述HuggingFace的SentenceTransformers是一种用于生成文本和图像嵌入的Python框架,提供了最新的技术。这个框架可以通过HuggingFaceEmbeddings类来使用嵌入模型。尽管它功能强大,但在本地运行可能会受到操作系统和其他因素的影响,因此推荐给有经验的用户使用。核心原理解析SentenceTransformers基于BERT等深度学习模型,通过转化输入文本为
- 深入浅出--vue3封装echarts组件
brrdg_sefg
echarts前端javascript
1、引言在现代Web应用开发中,数据可视化已成为不可或缺的一部分。ECharts,作为一款强大的图表库,提供了丰富的图表类型和高度定制化的选项,深受开发者喜爱。然而,在Vue项目中直接使用ECharts可能会遇到状态管理、响应式更新和组件化封装的挑战。本文将介绍如何在Vue3中封装一个高效、可复用的ECharts组件——TChart。2、组件亮点响应式图表:自动调整大小以适应容器。空数据展示:支持
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- 深入理解PHP中的面向对象编程
chao189844
phpandroid开发语言
PHP作为一门流行的后端编程语言,其面向对象编程(OOP)特性为开发者提供了一种组织代码的强大方法。在这篇文章中,我们将会深入浅出地探讨PHP中的OOP核心概念,帮助你构建更加结构化和可维护的应用程序。首先,让我们来定义什么是类和对象。想象一下,类就像是汽车的设计图纸,它描述了汽车应该具备的属性和功能;而对象则是根据这个设计图纸制造出来的真实汽车。在PHP中,我们可以通过类来定义属性和方法,然后创
- LSTM、GRU 与 Transformer网络模型参数计算
suixinm
lstmgrutransformer
参数计算公式对比模型类型参数计算公式关键组成部分LSTM4×(embed_dim×hidden_size+hidden_size²+hidden_size)4个门控结构GRU3×(embed_dim×hidden_size+hidden_size²+hidden_size)3个门控结构Transformer(Encoder)12×embed_dim²+9×embed_dim×ff_dim+14×e
- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb