- 【机器学习笔记Ⅰ】9 特征缩放
巴伦是只猫
机器学习机器学习笔记人工智能
特征缩放(FeatureScaling)详解特征缩放是机器学习数据预处理的关键步骤,旨在将不同特征的数值范围统一到相近的尺度,从而加速模型训练、提升性能并避免某些特征主导模型。1.为什么需要特征缩放?(1)问题背景量纲不一致:例如:特征1:年龄(范围0-100)特征2:收入(范围0-1,000,000)梯度下降的困境:量纲大的特征(如收入)会导致梯度更新方向偏离最优路径,收敛缓慢。量纲小的特征(如
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 【深度学习解惑】在实践中如何发现和修正RNN训练过程中的数值不稳定?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn人工智能tensorflowpytorch神经网络机器学习
在实践中发现和修正RNN训练过程中的数值不稳定目录引言与背景介绍原理解释代码说明与实现应用场景与案例分析实验设计与结果分析性能分析与技术对比常见问题与解决方案创新性与差异性说明局限性与挑战未来建议和进一步研究扩展阅读与资源推荐图示与交互性内容语言风格与通俗化表达互动交流1.引言与背景介绍循环神经网络(RNN)在处理序列数据时表现出色,但训练过程中常面临梯度消失和梯度爆炸问题,导致数值不稳定。当网络
- MEMS寻北仪在非开挖工程中如何应用?
ericco123
科技制造MEMS陀螺仪惯性技术
在非开挖地下工程作业中,轨迹控制精度会直接影响施工效率。传统磁定向工具在金属管道、城市地下强磁干扰环境中易失效;光纤陀螺体积大且抗振抗冲击性能较差。而ER-MNS-09作为一款通用版MEMS寻北仪凭借其抗磁干扰、微型化和稳定可靠等优势,可显著提升复杂工况下的导向精度。那么,ER-MNS-09的优势在非开挖工程作业时如何体现?强磁干扰环境传统磁定向工具在城市地下及工业区等强磁环境中作业时,受地磁场影
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 使用Qlib基于LightGBM预测沪深300涨跌
DeepReinforce
量化投资
Qlib是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于LightGBM的梯度提升决策树(GBDT)模型,并使用金融数据集(包含158个技术指标特征)进行训练和预测。1.导入必要的模块pythonCollapseWrapRunCopyfromqlib.contrib.model.gbdtimportLGBModelfromqlib.contrib.data.handlerimport
- 【机器学习&深度学习】为什么分类任务中类别比例应接近 1:1?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是类别不平衡?二、为什么类别比例应接近1:1?2.1⚠模型容易“偏科”2.2精确率、召回率失真2.3模型训练失衡,梯度方向偏移三、现实案例中的“灾难性后果”四、如何应对类别不平衡问题?4.1数据层面处理4.2模型训练层面优化4.3评估指标替代五、实际场景举例六、模拟场景:银行信用卡欺诈检测6.1场景描述6.2数据集情况6.3模型训练结果(未处理不平衡)6.4模型做了什么?6.5实际
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- 为什么MEMS定向短节抗磁干扰优于磁通门定向短节?
ericco123
科技制造MEMS陀螺仪惯性技术
一、磁通门传感器的核心缺陷:磁敏感性的局限磁通门传感器作为磁性定向短节的核心,其工作原理完全依赖地磁场。这导致其在井下复杂环境中存在不可克服的技术缺陷,主要表现在以下两个方面:1.磁干扰下数据失真当磁通门传感器处于套管、油管、钻杆等由铁磁性材料构成的井段时,这些材料会严重畸变周围的地磁场分布。由于无法区分真实地磁场与畸变磁场,导致方位角测量结果失真甚至完全错误。在强磁矿区、邻井电磁作业等存在强人工
- 【目标检测】Yolov7 的 ELAN 和 E-ELAN 模块演进(涉及到分组卷积,cardinality,梯度路径)
Jiangnan_Cai
深度学习目标检测YOLO人工智能
感觉从YOLOv6开始,YOLOv6系列感觉优化点都着重于推理速度上面,YOLOv6的RepBlock重参数化,给我的感觉就是算子融合进行加速。而YOLOv7,为了在各种架构的边缘设备上获得极致的推理速度。YOLOv7的工作:新的bagoffreebies(有效的训练技巧,不会增加推理的计算量)有规划的重参数化模型(不同边缘设备架构,不同的重参数化方法)新的动态标签分配方法为了更好的理解YOLOv
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 穿透硅层:模电数电如何重塑你的编程基因
还债大湿兄
模电数电
“不理解电子运动的程序员,永远在数字世界的表层流浪。”——吉恩·阿姆达尔(IBM360系统架构师)一、晶体管级视角:代码的物理载体1.CPU指令执行的硬件真相关键模电参数:阈值电压Vth:决定晶体管开关的电压临界点(典型值0.7V)跨导gm:栅压控制电流的能力(单位mS)米勒电容Cgd:限制开关速度的核心因素2.存储器操作的电子原理DRAM存储单元刷新过程://硬件级刷新伪代码voiddram_r
- 量子传感探针:金刚石NV色心实现细胞级磁弹性成像(分辨率10nm)技术解析
百态老人
人工智能
一、技术原理与核心突破金刚石氮-空位色心(NV色心)作为原子级量子传感器,其磁弹性成像能力源于电子自旋态与环境磁场的量子相干相互作用,结合纳米探针技术实现细胞级分辨率。核心技术原理包括:1.NV色心量子传感机制磁弹性耦合模型:NV色心的自旋哈密顿量可表示为:H=DSz2+γeB⋅S+λϵ⋅SH=DS_z^2+\gamma_e\mathbf{B}\cdot\mathbf{S}+\lambda\mat
- 计算机模拟双缝干涉实验报告,电磁场与微波实验三报告——双缝干涉实验.docx...
weixin_39605840
计算机模拟双缝干涉实验报告
《电磁场与微波实验三报告——双缝干涉实验.docx》由会员分享,提供在线免费全文阅读可下载,此文档格式为docx,更多相关《电磁场与微波实验三报告——双缝干涉实验.docx》文档请在天天文库搜索。1、双缝干涉实验1.实验原理如右图所示,当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源。由同一波源到达两缝后所发出的次级波是相干波,因此在金属板后面的空间中将产生干涉现象。当然,
- 超材料设计破局!Meta AI 等提出 UNIMATE,首次实现拓扑生成/性能预测等任务的统一建模
hyperai
超材料是一类由人工设计的亚波长结构组成的材料,能够突破天然材料的固有限制,实现对电磁波的精确调控,如负折射率、超透镜、隐身技术等。其中,机械超材料作为一类拥有特殊力学性能的人造材料,在航空航天、生物医药、能源存储等多个领域展现出巨大的应用潜力。其独特之处在于性能并非由材料的化学成分决定,而是通过精心设计的微观结构来实现。例如,具有负泊松比的超材料在拉伸时会横向膨胀,这种特性使其在柔性器件中具有重要
- NCCL 核心集体通信操作深度解析:从原理到优化实践
清风 001
AI大模型底层建设gpu算力ai
目录引言:NCCL——分布式训练的通信引擎一、NCCL基础:GPU通信的“加速器”1.1NCCL与MPI的协同1.2集体通信的价值二、NCCL核心操作深度解析2.1AllGather:全局数据聚合2.1.1定义与目标2.1.2算法原理2.1.3性能影响因素2.1.4测试方法(nccl-tests)2.2AllReduce:梯度聚合的核心2.2.1定义与目标2.2.2算法原理2.2.3性能影响因素2
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- 自动驾驶感知系统
三十度角阳光的问候
自动驾驶人工智能机器学习
目录感知传感系统介绍定位技术介绍自动驾驶感知传感系统激光雷达原理激光雷达类型激光雷达测距原理知名供应商介绍毫米波雷达超声波雷达工作原理超声波雷达类型常见自动驾驶传感器品牌及产品感知传感系统介绍利用摄像头捕捉图像信息,如道路标志、交通信号、车辆、行人等,为自动驾驶系统提供决策依据。通过发射激光束并测量反射时间,计算周围物体的距离和位置,提供高精度信息和三维地图。利用毫米波电磁波检测短距离障碍物,测量
- MSP430F247TPMR
szrileyH
TI低功耗低频振荡器内部频率高达16MHz32KHz晶振
描述德州仪器(TI)MSP430系列超低功耗微控制器包含几个器件,这些器件特有针对多种应用的不同外设集。这种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池使用寿命而优化。该器件具有一个强大的16位RISCCPU,16位寄存器和有助于获得最大编码效率的常数发生器。数控振荡器(DCO)可在不到1μs的时间里从低功耗模式唤醒至运行模式。MSP430F23x/24x(1)/2410系列微控制器
- HTML 语言代码
HTML语言代码引言HTML,即超文本标记语言(HyperTextMarkupLanguage),是构建网页和互联网应用的基础。自1990年发明以来,HTML一直是网页设计和开发的核心技术。本文将详细介绍HTML语言的起源、发展、基本结构、常用标签以及在实际应用中的重要性。HTML语言的起源与发展起源HTML的发明者是蒂姆·伯纳斯-李(TimBerners-Lee),他在1989年发明了万维网(W
- 【AI大模型】神经网络反向传播:核心原理与完整实现
我爱一条柴ya
学习AI记录人工智能神经网络深度学习aiAI编程
一、反向传播的本质与意义反向传播(Backpropagation)是神经网络训练的核心算法,通过链式法则高效计算损失函数对网络参数的梯度,实现神经网络的优化学习。它的出现解决了神经网络训练中的关键瓶颈,使深度学习成为可能。为什么需要反向传播?参数规模爆炸:现代神经网络有数百万至数十亿参数手动计算不可行:复杂网络梯度计算量指数级增长高效优化需求:梯度下降算法需要精确的梯度计算二、前向传播与反向传播对
- 一篇文章教会你继电器模块原理及使用,附STM32代码示例
The_xzs
传感器教程stm32单片机嵌入式硬件传感器C
目录一、继电器介绍:二、继电器使用说明:(1)继电器的工作原理:(2)继电器的接线端子:(3)继电器控制:(4)继电器原理图:三、代码示例:(1)继电器控制代码:(2)按键控制代码:(3)main函数:(4)接线图:四、代码下载:一、继电器介绍:继电器模块是一种利用电磁原理控制电路通断的电子器件。它通过低压信号控制高压电路,实现自动调节、隔离和安全保护。直流继电器模块的五个引脚中,两个用于控制线圈
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- VTK中使用梯度幅值计算边缘
点PY
三维渲染服务器前端linux
#include#includevtkSmartPointerDetectEdgesWithGradient(vtkImageData*binaryVolume){</
- Python训练营打卡 Day50
预训练模型+CBAM模块知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调预训练模型+CBAM模块知识点回顾ResNet结构解析残差块:ResNet的核心是残差块,它通过残差连接解决了深层网络的梯度消失问题。残差块允许梯度直接传播到后面的层,从而使得网络能够训练得更深。网络结构:ResNet由多个残差块组成,每个残差块包含两个或三个卷积层,以及一个
- MEMS定向短节相较于磁通门传感器的优势在哪里?
ericco123
MEMS陀螺仪惯性技术制造科技
磁通门传感器得益于其的高精度和稳定性,在地质勘探、电流传感等静态磁场测量场合下被广泛应用。然而,磁通门传感器虽对静态磁场敏感,但在强交变磁场环境中极易受到干扰,从而影响数值精准度。此外,功耗高、响应慢等一系列问题也限制了应用场景。ER-Gyro-19完美解决了这些缺点带来的局限,具备与磁通门传感器兼容的电气接口与机械结构,实现原位替换,在一些磁通门传感器无法应用的场合,尤其是石油天然气测井领域也能
- 北上广深编程语言生态与薪资全景分析(2024-2025)
小李也疯狂
其他python开发语言
目录前言一、用户数量与地域分布1.1开发者基数与城市能级1.2编程语言流行度对比二、薪资水平与行业关联2.1城市薪资梯度2.2语言薪资排名2.3行业薪资溢价三、技术趋势与影响因素3.1行业需求驱动3.2新兴技术冲击3.3政策与人才流动四、职业发展指导意见4.1开发者能力图谱4.2地域选择策略4.3企业技术选型建议结语前言在数字经济时代,编程语言的选择不仅决定技术路径,更直接影响职业发展。作为中国科
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文