- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 6. 深度学习中的正则化技术:防止过拟合
Network_Engineer
机器学习深度学习人工智能
引言过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。1.过拟合的原因与影响过拟合通常发生在模型的复
- 3.关于Detr
安逸sgr
Transformer计算机视觉目标检测transformer
关于Detr模型架构总体架构classTransformer(nn.Module):def__init__(self,d_model=512,nhead=8,num_encoder_layers=6,num_decoder_layers=6,dim_feedforward=2048,dropout=0.1,activation="relu",normalize_before=False,retur
- PyTorch踩坑记录1
普通攻击往后拉
troch陶器神经网络基础模型关键点pytorch人工智能python
1model.eval()无法关闭dropout因为model.eval()控制self.training参数,只有用nn.Dropout(0.5)声明才能在调用model.eval()后关闭,用F.dropout(x,p=0.5)是没办法自动关闭的,需要手动把self.training的参数传入到F.dropout()里才行。网上查到是因为model.eval()会影响继承nn.module类的
- PyTorch使用Tricks:Dropout,R-Dropout和Multi-Sample Dropout等 !!
JOYCE_Leo16
计算机视觉pytorch人工智能python深度学习神经网络
文章目录1、为什么使用Dropout?2、Dropout的拓展1:R-Dropout3、Dropout的拓展2:Multi-SampleDropout4、Dropout的拓展3:DropConnect5、Dropout的拓展4:Standout6、Dropout的拓展5:GaussianDropout1、为什么使用Dropout?Dropout是一种在神经网络训练过程中用于防止过拟合的技术。在训练
- 一文带你了解单细胞数据基因集打分的所有算法
生信宝库
上一周Immugent写了一篇一文解决单细胞亚群注释的所有问题,引出了单细胞测序技术的面临的几大未解决的技术难题,其中最主要的一个问题就是由于测序深度不足产生的"dropout"现象。这使得很多情况下所见非所得,傻傻分不清有些基因表达量很低,是因为没有测到还是本身没有表达。对于这种现象很多研究者给出了自己的解决方法,其中最主要的一大类就是通过对包含多个基因的基因集综合打分来评估细胞的某一项功能,比
- scIMC:scRNA-seq插补方法基准
tzc_fly
单细胞多组学分析人工智能
在scRNA-seq中一个主要的挑战即为“dropout”事件,它扭曲了基因表达,显著影响了单细胞转录组的下游分析。为了解决这个问题,已经做了很多努力,并开发了几种基于模型和基于深度学习的scRNA-seq插补方法。但是,目前还缺乏对现有方法进行全面、系统的比较。在这项工作中,作者使用6个模拟和2个真实的scRNA-seq数据集,从以下四个方面全面评估和比较了总共12种可用的插补方法:1.基因表达
- 机器学习:SVM、softmax、Dropout及最大池化max_pool介绍
是Dream呀
机器学习笔记深度学习机器学习支持向量机人工智能
一、利用线性SVM进行分类train_data:(train_num,3072)训练流程初始化权重W:(3072,10)梯度dW:(3072,10)train_data和权重相乘得到score(10,)对应每个类别的分数2.1对于每个score中的分数i,如果是正确的类别对应的score跳过2.2如果是其他的类别,计算margin=score[i]-correct_score+12.3如果其他的m
- Graph Contrastive Learning with Augmentations
tutoujiehegaosou
Graph笔记
GraphCL学习笔记Abstract提出GNN对自监督学习和pre-training较少。本文提出了GraphCL框架,用于学习图的无监督表示。设计四种类型的数据增强,在不同的settings(learningrate,batchsize,dropout参数)下,研究这四种增强对不同数据集的影响。Introduction大多数graph-level的任务场景,GNN都是在监督的情况下进行端到端的
- 一个用于验证在GPU上训练模型比在CPU上快的代码||TensorFlow||神经网络
@Duang~
机器学习tensorflow人工智能python
importtimeimporttensorflowastffromkerasimportlayers#创建一个大规模模型model=tf.keras.Sequential()model.add(layers.Dense(1000,activation='relu',input_shape=(10000,)))model.add(layers.Dropout(0.5))model.add(laye
- haiku实现TemplatePairStack类
qq_27390023
python人工智能开发语言
TemplatePairStack是实现蛋白质结构模版pair_act特征表示的类:通过layer_stack.layer_stack(c.num_block)(block)堆叠c.num_block(配置文件中为2)block函数,每个block对输入pair_act和pair_mask执行计算流程:TriangleAttention—>dropout->TriangleAttention—>d
- 「深度学习」dropout 技术
Sternstunden
深度学习深度学习人工智能神经网络机器学习
一、工作原理1.正则化网络dropout将遍历网络的每一层,并设置消除神经网络中节点的概率。1.每个节点保留/消除的概率为0.5:2.消除节点:3.得到一个规模更小的神经网络:2.dropout技术最常用:反向随机失活"Inverteddropout"以三层网络(l=3)为例:keep-prob=0.8#保留某个隐藏单元的概率#生成随机矩阵,每个单元对应值为1的概率是0.8,用于决定第三层哪些元素
- 周记:2019第26周(6.24-6.30)
孙文辉已被占用
1工作:主要是写文档,一个产品说明书,2个专利交底书2学习:《DeepLearning》7/20(chapters)看完第7章(RegularizationforDeepLearning),这章和下一章讲的优化方法应该是深度学习最重要的理论基础了,好多面试题都会问到。记录一下各种降低模型错误率的方法,包括添加正则化项,数据集扩增,多任务学习,earlystoping,dropout,稀疏表示。理论
- 卷积神经网络之优化参数(剪子包袱锤)
the sourth wind
CVgputensorflow神经网络python卷积神经网络
目录一.优化参数的三个方法1.手动修改2.for循环调参3.KerasTunner自动调参工具介绍1.安装2.准备训练数据和加载的库3.创建HyperParameters对象以及模型生成函数4.创建Hyperband对象4.开始优化5.获取最佳模型6.结果显示二.注释1.为什么二次调参无效,不起作用?(避坑)2.dropout的意义3.WARNING:tensorflow:Callbacksmet
- Pytorch: nn.dropout
湫兮之风
pytorchpytorch人工智能python深度学习机器学习
Dropout是一种用于深度学习模型的正则化技术,旨在减少模型对特定训练样本的过度拟合。其主要作用包括:减少过拟合:Dropout阻止神经网络对某些特定输入值过度依赖,从而提高模型的泛化能力。通过随机地失活神经元(将其输出设为零),模型在训练期间不会过度依赖于任何一个神经元,减少了复杂模型在训练数据上的过拟合风险。提高模型的鲁棒性:Dropout可以使模型对输入的微小变化更加鲁棒,因为模型不会过分
- Keras学习笔记3——keras.layers
winter_python
python
目录0.函数1.全连接层2.激活层3.Dropout层4.Flatten层5.Reshape层6.卷积层Conv2DLocallyConnected2D7.池化层8.循环层RNNSimpleRNNGRULSTMConvLSTM2DSimpleRNNCellGRUCellLSTMCellCuDNNGRUCuDNNLSTM9.嵌入层10.融合层MergeAddSubtractMultiplyAvera
- Bi-Lstm+crf命名实体识别任务中crf的作用
sunshine2853
深度学习lstm人工智能crf
这是一段使用百度ernie-1.0做特征提取的Bi-Lstm+crf的代码:classERNIE_LSTM_CRF(nn.Module):"""ernie_lstm_crfmodel"""def__init__(self,ernie_config,tagset_size,embedding_dim,hidden_dim,rnn_layers,dropout_ratio,dropout1,use_c
- 《动手学深度学习(PyTorch版)》笔记4.6
南七澄江
深度学习笔记python深度学习pytorch笔记算法python人工智能
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过。Chapter4MultilayerPerceptron4.6DropoutRegularization4.6.1ReexamineOverfitting当面对更多的特征而样本不足时
- DropBlock
圆圆栗子君
人工智能算法
一、Dropout和DropBlock在2D的数据中,dropout的效果并不好(图像具有空间局部依赖,在局部范围内,少量的像素特征值被drop掉,并不太影响整个模型的预测)就是说,dropout只能随机的把多处的某一点神经元给丢掉,但是图像附近删除某一点,在其范围内,因为相似的比较多,在大范围看来,丢失的这一点对模型没什么影响,不会影响模型的预测,就像把一个小狗身上好多点,也不会影响别人知道他是
- 深度学习(6)--Keras项目详解
GodFishhh
深度学习python深度学习人工智能
目录一.项目介绍二.项目流程详解2.1.导入所需要的工具包2.2.输入参数2.3.获取图像路径并遍历读取数据2.4.数据集的切分和标签转换2.5.网络模型构建2.6.绘制结果曲线并将结果保存到本地三.完整代码四.首次运行结果五.学习率对结果的影响六.Dropout操作对结果的影响七.权重初始化对结果的影响7.1.RandomNormal7.2.TruncatedNormal(推荐)八.正则化对结果
- Dropout原理解析
yxyou_1124
毕设深度学习机器学习人工智能
**1.Dropout简介**1.1Dropout出现的原因在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题
- 【DeepLearning-7】 CNN 和Transformer的混合神经网络结构
风筝超冷
神经网络cnntransformer
构造函数__init__def__init__(self,channel,dim,depth=2,kernel_size=3,patch_size=(2,2),mlp_dim=int(64*2),dropout=0.):初始化函数定义了网络的主要结构和参数。channel:输入特征的通道数。dim:Transformer部分的特征维度。depth:Transformer的层数。kernel_siz
- 自然语言NLP学习
wangqiaowq
自然语言处理学习人工智能
2-7门控循环单元(GRU)_哔哩哔哩_bilibiliGRULSTM双向RNNCNN卷积神经网络输入层转化为向量表示dropoutppl标量在物理学和数学中,标量(Scalar)是一个只有大小、没有方向的量。它只用一个数值就可以完全描述,且满足交换律。例如,质量、温度、时间、体积、密度、功、能量等都是标量。在向量代数中,标量与向量是相对的概念,标量可以与向量相乘,从而改变向量的长度但不改变其方向
- (深度学习)目标检测常见术语
kgbkqLjm
DeepLearning
文章目录AnchorIoU(Intersectionoverunion)NMS(Non-maxsuppression)RP(RegionProposal)BN(BatchNormalization)CEL(CrossEntropyLoss)SoftmaxLogisticRegressionEarlyStoppingDropoutMomentumandlearningdecayAnchor简言之就是
- 学习笔记-李沐动手学深度学习(四)(12-13,权重衰退、L2正则化、Dropout)
kgbkqLjm
李沐动手学深度学习学习笔记深度学习
总结【trick】过拟合及正则化项参数的理解实际数据都有噪音,一般有噪音后,模型实际学习到的权重w就会比理论上w的最优解(即没有噪音时)大。(QA中讲的)【好问题】(1)不使用正则化(真正学习到的w=13理论上的w=0.01,相差的还是很大)(2)正则化权重lambd=3:明显已经减轻了过拟合的程度(但学到的w是0.3还是比实际的w=0.01偏大的多)因为实际上数据中有很多噪音,模型在学习时也会受
- Tensorflow高阶内容(五)- Deep Learning
BingshengTian_Mamba
深度学习DLtensorflowtensorflow神经网络深度学习
高阶内容5.1Classification分类学习5.2什么是过拟合(Overfitting)5.3Dropout解决Overfitting5.4什么是卷积神经网络CNN(ConvolutionalNeuralNetwork)5.5CNN卷积神经网络15.6CNN卷积神经网络25.7CNN卷积神经网络35.8Saver保存读取5.9什么是循环神经网络RNN(RecurrentNeuralNetwo
- 【DeepLearning-5】基于Transformer架构的自定义神经网络类
风筝超冷
transformer神经网络深度学习
类定义classUserDefined(nn.Module):UserDefined是一个自定义的神经网络类,继承自PyTorch的nn.Module基类。构造函数__init__def__init__(self,dim,depth,heads,dim_head,mlp_dim,dropout=0.):__init__方法是类的构造函数,用于初始化UserDefined实例。dim:特征的维度。d
- 2019-03-28
Sofie_6804
线性稳压器主要包括普通线性稳压器和LDO(LowDropoutRegulator,低压差线性稳压器)两种类型,它们的主要区别是:普通线性稳压器(如常见的78系列三端稳压器)(AK4421AET)工作时要求输入与输出之间的压差值较大(一般要求在2~3V以上),功耗较高;而LDO工作时要求输入与输出之间的压差值较小(可以为IV以下甚至更低),功耗较低。(1)线性稳压器基本工作原理线性稳压器是通过输出电
- 土堆学习笔记——P29完整的模型训练套路(三)
Whalawhala
学习笔记
一些细节:在训练前有一个tudui.train()的作用:如果网络里有dropout/batchnorm等层,就需要用到tudui.train(),也就是没有这些层的话,tudui.train()没用调用不调用都行在测试前有一个tudui.eval()的作用:同上整个训练逻辑:准备数据dataloader加载数据集创建网络模型(看注释a)定义损失函数、优化器设置训练网络的一些参数,如训练的次数、测
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class