- 开源数据分析工具 RapidMiner
kcarly
大数据治理与分析开源数据分析数据挖掘
RapidMiner是一款功能强大且广泛应用的数据分析工具,其核心功能和特点使其成为数据科学家、商业分析师和预测建模人员的首选工具。以下是对RapidMiner的深度介绍:1.概述RapidMiner是一款开源且全面的端到端数据科学平台,支持从数据准备、机器学习、预测分析到模型部署的整个工作流程。它基于Java开发,具有高度的模块化和可扩展性,能够与多种数据源无缝集成,包括MicrosoftExc
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- python 库总结
杜小伙伴
python正则表达式后端
原文链接:https://blog.csdn.net/xufive/article/details/102676755在这个列表中,把模块分成11大类:基础类数据库接口类网络通讯类音像游戏类GUI类web框架类科学计算类2D/3D类数据处理类机器学习类工具类针对每一个模块给出了相应的推荐指数,从1颗星到5颗星。这是一个非常主观的判断,仅供参考。★☆☆☆☆:较少被用到★★☆☆☆:重要但较少被用到,★
- python安装jupyter
qq_27390023
pythonjupyter
JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。###安装pip##pip是一个安装和管理Python包的工具wgethttps://bootstrap.pypa.io/get-pip.pypython3get-pip.py##创建软连接ln-s/usr/
- 算法问题整理(二)
分享总结快乐
算法
网络资料整理个人学习,感谢各位大神!(若侵则删)问题10:卷积-目标检测系列问题参考:40+目标检测网络架构大盘点!从基础架构ResNet到最强检测器Yolov7再到最新部署神器GhostNetV2【深度学习】YOLO检测器家族所有版本(2024最新汇总、详细介绍)_yolo各个版本-CSDN博客YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍!!-腾讯云开发者社区-腾讯云关键挑战:类
- 探秘 GitCode 上的开源项目:91pron - AI 引擎驱动的智能视频处理工具
毕艾琳
探秘GitCode上的开源项目:91pron-AI引擎驱动的智能视频处理工具去发现同类优质开源项目:https://gitcode.com/项目简介在平台上,有一个名为的开源项目,它是一个利用人工智能技术进行智能视频处理的应用。虽然项目的名称可能有些隐晦,但其核心功能却极具实用价值,特别是对于那些需要自动化处理大量视频数据的工作。技术分析1.AI模型应用91pron使用了深度学习模型,尤其是计算机
- 大模型技术对大数据生态链的全面革新
敏叔V587
大数据
大模型技术对大数据生态链的全面革新在数字化浪潮汹涌澎湃的当下,大数据和人工智能技术已成为推动各行业发展的关键力量。其中,大模型技术的崛起,正深刻地改变着大数据生态链的格局,为数据的处理、分析与应用带来了前所未有的变革。今天,就让我们一同深入探讨大模型技术对大数据生态链的多维度影响,并结合实际案例展开分析。一、大模型技术:重塑数据采集与整合(一)智能采集优化传统的数据采集往往依赖于预设规则和人工干预
- 机器学习算法-逻辑回归
Larkin88
机器学习算法逻辑回归
机器学习算法-逻辑回归1.K-近邻算法(略)2.线性回归(略)3.逻辑回归3.1逻辑回归介绍逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的练习。由于算法的简单和高效,在实际中应用非常广泛。1、逻辑回归的应用场景广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号2逻辑回归的原理2.1输入$$h(w)=w_
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- 人工智能-数据分析及特征提取思路
power-辰南
人工智能人工智能特征提取大模型机器学习
1、概况基于学生行为数据预测是否涉黄、涉黑等。2.数据分析数据分析的意义包括得到数据得直觉、发掘潜在的结构、提取重要的变量、删除异常值、检验潜在的假设和建立初步的模型。2.1数据质量分析2.1.1数据值分析查看数据类型:首先明确各字段的数据类型,例如学生标识通常为字符串类型(如学号),访问时间一般是日期时间类型,访问网址、搜索关键词等为文本类型,停留时长、访问频次等则是数值类型,而是否涉黄涉黑标签
- DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索
kaichu2
论文翻译DeepSeek
DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索在人工智能领域,大型语言模型(LLMs)的发展日新月异,其在自然语言处理和生成任务中的表现逐渐接近人类水平。然而,如何进一步提升这些模型的推理能力,使其能够更好地处理复杂的逻辑、数学和科学问题,一直是研究的热点。最近,DeepSeek-AI团队发布的DeepSeek-R1模型为这一领域带来了新的突破。本文将详细介绍DeepSeek-
- AI助力精准农业:从数据到行动的智能革命
Echo_Wish
人工智能前沿技术人工智能
AI助力精准农业:从数据到行动的智能革命农业,作为人类最古老的产业,正经历着一场前所未有的智能化变革。从传统的经验种植到现代化机械农业,再到今天的人工智能(AI)精准农业,科技的每一次跃迁都在提高农业生产效率,降低资源浪费,并增强粮食安全。AI之所以能在农业中大显身手,主要依赖于数据驱动的智能决策。通过卫星遥感、无人机、传感器、气象数据等多维度信息,AI可以帮助农民精准施肥、智能灌溉、预测病虫害,
- 智能工厂能耗管理:Python助力节能增效
Echo_Wish
Python进阶python开发语言
智能工厂能耗管理:Python助力节能增效在工业4.0时代,工厂能耗管理已成为制造企业降本增效的重要一环。传统的能耗管理方式往往依赖人工统计和经验决策,导致能源浪费严重。而借助人工智能与Python的强大能力,我们可以实现智能化、数据驱动的能耗优化方案。今天,我们就来聊聊如何利用Python构建智能工厂能耗管理系统,从数据采集、分析到优化,全面提升能源使用效率。1.为什么要智能化工厂能耗管理?1.
- 五子棋ai启发式搜索_一种快速而简单的人工智能启发式学习语言的方法
weixin_26630173
python人工智能java机器学习算法
五子棋ai启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyownin
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 大模型的底层逻辑及Transformer架构
搏博
transformer架构深度学习机器学习人工智能
一、大模型的底层逻辑1.数据驱动大模型依赖海量的数据进行训练,数据的质量和数量直接影响模型的性能。通过大量的数据,模型能够学习到丰富的模式和规律,从而更好地处理各种任务。2.深度学习架构大模型基于深度学习技术,通常采用多层神经网络进行特征学习与抽象。其中,Transformer架构是目前主流的大模型架构,它通过自注意力机制和前馈神经网络来处理输入数据。这种架构能够高效地处理序列数据,如文本。3.自
- 大语言模型轻量化:知识蒸馏的范式迁移与工程实践
LucianaiB
语言模型人工智能自然语言处理python
大语言模型轻量化:知识蒸馏的范式迁移与工程实践嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要在大型语言模型(LLM)主导人工智能发展的当下,模型参数量与推理成本的指数级增长已成为制约技术落地的核心瓶颈。本文提出基于动态知识蒸馏的轻量化范式,通过引入注意力迁移机制与分层蒸馏策略,在保持模型语义理解能力的同时实现参数效率的显著提升。实验表明,该方法在G
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- 智能运维分析决策系统:赋能数字化转型的新引擎
我的运维人生
运维运维开发技术共享
智能运维分析决策系统:赋能数字化转型的新引擎在数字化转型的浪潮中,企业对于高效、智能的运维管理需求日益迫切。传统的运维模式往往依赖于人工经验,难以应对大规模、复杂多变的IT环境。智能运维分析决策系统(AIOps,ArtificialIntelligenceforITOperations)应运而生,它利用大数据、机器学习、人工智能等技术,实现了运维的自动化、智能化,极大地提升了运维效率与质量,为企业
- AIGC从入门到实战:基于大模型的人工智能应用的涌现和爆发
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的新纪元:AIGC的崛起近年来,人工智能(AI)领域经历了前所未有的发展,其中AIGC(AIGeneratedContent,人工智能生成内容)的崛起尤为引人注目。AIGC借助深度学习模型,能够生成逼真的图像、视频、音频、文本等内容,为人类的创造力和生产力带来了革命性的改变。1.2大模型:AIGC的基石AIGC的核心驱动力在于大规模预训练模型(简称“大模型”)。这些模型拥
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍
GoAI
深入浅出LLM深入浅出AI大模型书生人工智能LLMllama
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·浦语大模
- AI模型调度架构全解析:实现任务与模型的智能匹配
大模型玩家
人工智能架构学习方法产品经理经验分享算法ai
在人工智能技术高速发展的今天,AI大模型的应用范围不断拓宽。从自然语言处理到技术研发、从教育场景到企业服务,AI大模型正在逐步改变我们的工作和生活。然而,随着需求的多样化和任务复杂性的增加,如何高效地调用和管理多个AI大模型,成为了企业和开发者面临的一大挑战。本文将深入剖析基于Ollama的AI大模型问答调度架构,探讨其核心设计、功能亮点,以及在业务场景中的应用优势,帮助您全面了解这一系统如何在复
- DeepSeek:探索未来的人工智能模型与技术
一ge科研小菜鸡
人工智能DeepSeek
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言近年来,大语言模型(LLM)迅速发展,推动了人工智能在多个领域的应用。从OpenAI的GPT系列到Google的Gemini,再到国内的多个自研大模型,全球AI竞赛已进入白热化阶段。在这一背景下,DeepSeekAI作为一个新兴的AI研究机构,凭借其强大的技术实力和创新能力,在大模型领域崭露头角。本文将从DeepSeek的背景、核心技术、
- 什么是 AI 代理?
白马区块Crypto100
SolanaAI套利策略交易人工智能SOL机器人deepseekAI交易
要点AI代理是可自主操作的程序,能够分析信息、从经验中学习,并代表用户执行任务。与普通机器人不同,AI代理不仅具有更强的操作和改进能力,而且几乎不需要人工干预。它们还可以与其他代理和应用程序进行交互。AI代理的应用非常广泛。例如,它们能够通过自动完成交易、管理风险、为NFT增加互动性以及简化区块链操作,推动加密货币领域的发展,使Web3更易于使用。简介人工智能(AI)正在转变我们生活、工作以及使用
- 【专题】DeepSeek技术颠覆or创新共赢,开启Al算法变革元年报告汇总PDF洞察(附原数据表)
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=39544在科技飞速迭代的当下,人工智能领域正经历着深刻变革,AIAgent的发展尤为引人瞩目。随着数字化进程的加速,全球数据量呈指数级增长,如同为AIAgent的发展提供了丰沃土壤。海量数据不仅为模型训练提供了坚实基础,更驱动着AIAgent在各领域的创新应用。与此同时,国产大模型在近期密集涌现,数量已颇具规模且广泛渗透到多个垂直行业,展现出强
- Python-机器学习(二)-K近邻算法的原理与鸢尾花数据集实现详解
2401_84009679
程序员机器学习python近邻算法
fromsklearn.neighborsimportKNeighborsClassifierk=5#对模型训练clf=KNeighborsClassifier(n_neighbors=k)clf.fit(x,y)#对样本进行预测x_sample=[[0,2]]neighbors=clf.kneighbors(x_sample)neighbors[1]plt.figure(figsize=(16,
- AICon北京站HarmonyOS技术分论坛开启招募,欢迎开发者踊跃报名
harmonyos
在人工智能的浪潮中,HarmonyOS以其独特的技术优势,引领着移动应用开发的新趋势。2024年12月14日,在AICon全球人工智能开发与应用大会(北京站)期间,将举办以“鸿蒙生态下的AI助力移动应用开发新范式”为主题的HarmonyOS技术分论坛。本届分论坛将邀请领先企业伙伴,行业领袖和技术专家,从AI辅助开发到智能编码,从大模型驱动的人机协同提高效率到IDE下的智能研发和知识库建设,共同探讨
- 流式学习(简易版)
想成为配环境大佬
论文学习信息可视化python
最近读论文看到了这个概念,感觉还挺有意思的流形(Manifold)广泛应用于多个领域,如几何学、物理学、机器学习等。流形本质上是一个局部类似于欧几里得空间的空间,即它在某些尺度下看起来像我们熟悉的平面或曲面,但整体结构可能是复杂的。简单来说,你可以把流形想象成一个“弯曲的”空间,在局部上看起来像我们熟悉的平面,但全局上可能是弯曲或折叠的。流形学习(ManifoldLearning)是一种用于降维(
- 【人工智能时代】- Windows本地部署Ollama+qwen本地大语言模型Web交互界面并实现公网访问
xiaoli8748_软件开发
人工智能时代人工智能windows语言模型
文章目录前言1.运行Ollama2.安装OpenWebUI2.1在Windows系统安装Docker2.2使用Docker部署OpenWebUI3.安装内网穿透工具4.创建固定公网地址前言本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装OpenWebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的大语言模型运行环境。近些年来随着Cha
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found