【高频电子线路】[模型]LC串联谐振回路(第2章 谐振功率放大器)

文章目录

  • 1. 回路阻抗
  • 2. 谐振频率——使 Z s Z_s Zs的虚部为0的频率
    • 2.1. 谐振电阻
    • 2.2. 特性阻抗:回路谐振时的感抗或容抗
    • 2.3. 电压分析
  • 3. 品质因数
  • 4. 广义失谐系数——表征了一个谐振回路偏离谐振频率的程度
  • 5. 通频带(回路带宽)

【高频电子线路】[模型]LC串联谐振回路(第2章 谐振功率放大器)_第1张图片

1. 回路阻抗

Z s = ∣ Z s ∣ e j φ = r + j X = r + j ω L + 1 j ω C = r + j ( ω L − 1 ω C ) \begin{aligned}Z_s&=|Z_s|e^{j\varphi}=r+jX\\ &=r+j\omega L+\dfrac{1}{j\omega C}=r+j(\omega L-\dfrac{1}{\omega C})\end{aligned} Zs=Zsejφ=r+jX=r+jωL+jωC1=r+j(ωLωC1)
{ ∣ Z s ∣ = r 2 + ( ω L − 1 ω C ) 2 φ = arctan ⁡ ω L − 1 ω C r \begin{cases}|Z_s|=\sqrt{r^2+(\omega L-\dfrac{1}{\omega C})^2}\\\varphi=\arctan \dfrac{\omega L-\dfrac{1}{\omega C}}{r}\end{cases} Zs=r2+(ωLωC1)2 φ=arctanrωLωC1
X = ω L − 1 ω C X=\omega L-\dfrac{1}{\omega C} X=ωLωC1

2. 谐振频率——使 Z s Z_s Zs的虚部为0的频率

ω 0 L − 1 ω 0 C = 0 ⇒ ω 0 = 1 L C \omega_0 L-\dfrac{1}{\omega_0 C}=0\rArr\omega_0=\dfrac{1}{\sqrt{LC}} ω0Lω0C1=0ω0=LC 1

2.1. 谐振电阻

  • R s = r R_s=r Rs=r
  • 谐振时回路的阻抗最小

2.2. 特性阻抗:回路谐振时的感抗或容抗

ρ = ω 0 L = 1 ω 0 C = L C \rho=\omega_0 L=\dfrac{1}{\omega_0 C}=\sqrt{\dfrac{L}{C}} ρ=ω0L=ω0C1=CL

2.3. 电压分析

  • 若在串联振荡回路两端加一恒压信号 U U U, 则发生串联谐振时因阻抗最小, 流过电路的电流最大, 其值为 I 0 = U r I_0=\dfrac{U}{r} I0=rU

  • 电感上的电压
    U ⋅ L = j ω 0 L I 0 = j U ω 0 L r \overset{\cdot}U_L=j\omega_0LI_0=jU\dfrac{\omega_0L}{r} UL=jω0LI0=jUrω0L

  • 电容上的电压
    U ⋅ C = I 0 1 j ω 0 C = − j U 1 ω 0 C r \overset{\cdot}U_C=I_0\dfrac{1}{j\omega_0C}=-jU\dfrac{1}{\omega_0Cr} UC=I0jω0C1=jUω0Cr1

  • 在谐振时,电容和电感上的电压将会远大于外加电压->在选电容和电感器件的耐压值要特别注意,串联谐振回路也称为电压谐振回路

3. 品质因数

  • Q = ω 0 L r = 1 ω 0 C r Q=\dfrac{\omega_0L}{r}=\dfrac{1}{\omega_0Cr} Q=rω0L=ω0Cr1

  • 电感上的电压
    U ⋅ L = j ω 0 L I 0 = j U ω 0 L r = j Q U \overset{\cdot}U_L=j\omega_0LI_0=jU\dfrac{\omega_0L}{r}=jQU UL=jω0LI0=jUrω0L=jQU

  • 电容上的电压
    U ⋅ C = I 0 1 j ω 0 C = − j U 1 ω 0 C r = − j Q U \overset{\cdot}U_C=I_0\dfrac{1}{j\omega_0C}=-jU\dfrac{1}{\omega_0Cr}=-jQU UC=I0jω0C1=jUω0Cr1=jQU

  • 在任意频率下的回路电流 I I I与谐振电流 I 0 I_0 I0之比
    I ⋅ I ⋅ 0 = U ⋅ Z s U ⋅ r = r Z s = 1 1 + j ω L − 1 ω C r = 1 1 + j ω 0 L r ( ω ω 0 − ω 0 ω ) = 1 1 + j Q ( ω ω 0 − ω 0 ω ) \dfrac{\overset{\cdot}I}{\overset{\cdot}I_0}=\dfrac{\dfrac{\overset{\cdot}U}{Z_s}}{\dfrac{\overset{\cdot}U}{r}}=\dfrac{r}{Z_s}=\dfrac{1}{1+j\dfrac{\omega L-\dfrac{1}{\omega C}}{r}}=\dfrac{1}{1+j\dfrac{\omega_0L}{r}(\dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega})}=\dfrac{1}{1+jQ(\dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega})} I0I=rUZsU=Zsr=1+jrωLωC11=1+jrω0L(ω0ωωω0)1=1+jQ(ω0ωωω0)1
    I I 0 = 1 1 + Q 2 ( ω ω 0 − ω 0 ω ) 2 \dfrac{I}{I_0}=\sqrt{\dfrac{1}{1+Q^2(\dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega})^2}} I0I=1+Q2(ω0ωωω0)21
    【高频电子线路】[模型]LC串联谐振回路(第2章 谐振功率放大器)_第2张图片

  • 无载(空载) Q Q Q:通常指不考虑信号源内阻和负载电阻时回路自身的 Q Q Q

  • 有载 Q L Q_L QL

    • 考虑信号源内阻 R S R_S RS和负载电阻 R L R_L RL影响时的 Q Q Q
    • Q L = ω 0 L r + R S + R L Q_L=\dfrac{ω_0L}{r+R_S+R_L} QL=r+RS+RLω0L
  • LC串联谐振回路为了有更好的的选频特性,品质因数都是远大于1

  • 串联谐振回路适用于信号源内阻与负载电阻较小的电路—— Q L Q_L QL值比较大

4. 广义失谐系数——表征了一个谐振回路偏离谐振频率的程度

  • ξ = Q ( ω ω 0 − ω 0 ω ) \xi=Q(\dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega}) ξ=Q(ω0ωωω0)
  • I I 0 = 1 1 + ξ 2 \dfrac{I}{I_0}= \dfrac{1}{\sqrt{1+\xi^2}} I0I=1+ξ2 1
  • ω ω 0 − ω 0 ω = ( ω + ω 0 ) ( ω − ω 0 ) ω ω 0 ≈ 2 ω Δ ω ω ω 0 = 2 Δ ω ω 0 \dfrac{\omega}{\omega_0}-\dfrac{\omega_0}{\omega}=\dfrac{(\omega+\omega_0)(\omega-\omega_0)}{\omega\omega_0}\approx\dfrac{2\omega\Delta \omega}{\omega\omega_0}=\dfrac{2\Delta \omega}{\omega_0} ω0ωωω0=ωω0(ω+ω0)(ωω0)ωω02ωΔω=ω02Δω
    ξ ≈ 2 Q Δ ω ω 0 \xi\approx 2Q\dfrac{\Delta \omega}{\omega_0} ξ2Qω0Δω

5. 通频带(回路带宽)

  • 回路的通频带 B B B:当保持外加信号的幅值不变而改变其频率时, 回路电流值下降为谐振值的 1 2 ≈ 0.707 \dfrac{1}{\sqrt{2}}\approx0.707 2 10.707时对应的频率范围
  • I I 0 = 1 1 + ξ 2 = 1 2 ⇒ ξ = ± 1 \dfrac{I}{I_0}= \dfrac{1}{\sqrt{1+\xi^2}}=\dfrac{1}{\sqrt{2}}\rArrξ=±1 I0I=1+ξ2 1=2 1ξ=±1
    ξ ≈ 2 Q Δ ω ω 0 = 1 ⇒ ω 0 Q = 2 Δ ω ⇒ f 0 Q = 2 Δ f 0.707 \xi\approx 2Q\dfrac{\Delta \omega}{\omega_0}=1\rArr\dfrac{\omega_0}{Q}=2\Delta \omega\rArr\dfrac{f_0}{Q}=2\Delta f_{0.707} ξ2Qω0Δω=1Qω0=2ΔωQf0=2Δf0.707
    B = f 0 Q = 2 Δ f 0.707 B=\dfrac{f_0}{Q}=2\Delta f_{0.707} B=Qf0=2Δf0.707

你可能感兴趣的:(高频电子线路)