题目名称:
关于while(条件表达式) 循环体,以下叙述正确的是( )? (假设循环体里面没有break, continue,return,goto等等语句)
题目内容:
A .循环体的执行次数总是比条件表达式的执行次数多一次
B .条件表达式的执行次数总是比循环体的执行次数多一次
C .条件表达式的执行次数与循环体的执行次数一样
D .条件表达式的执行次数与循环体的执行次数无关
while (条件表达式) { 循环体 }
while循环中,当条件表达式成立时,才会执行循环体中语句,每次执行期间,都会对循环因子进行修改(否则就成为死循环),修改完成后如果while条件表达式成立,继续循环,如果不成立,循环结束
故:while循环条件将会比循环体多执行一次。
题目名称:
有以下程序
#include
int main()
{
int a = 0, b = 0;
for (a = 1, b = 1; a <= 100; a++)
{
if (b >= 20) break;
if (b % 3 == 1)
{
b = b + 3;
continue;
}
b = b - 5;
}
printf("%d\n", a);
return 0;
}
程序的输出结果是?( )
题目内容:
A .10
B .9
C .8
D .7
题目名称:
数9的个数
题目内容:
编写程序数一下 1到 100 的所有整数中出现多少个数字9
/*
思路:
1. 给一个循环从1遍历到100,拿到每个数据后进行一下操作
2. a. 通过 % 的方式取当前数据的个位,检测个位数据是否为9
如果是,给计数器加1
b. 通过 / 的方式取当前数据的十位,检测十位数据是否是9,
如果是,给计数器加1
循环一直继续,直到所有的数据检测完,所有9的个数已经统计在count计数中。
*/
int main()
{
int count = 0;
int i = 0;
for (i = 1; i <= 100; i++)
{
if (i % 10 == 9) {
count++;
}
if (i / 10 == 9)
{
count++;
}
}
printf("数9的个数为%d\n", count);
return 0;
}
题目名称:
分数求和
题目内容:
计算1/1-1/2+1/3-1/4+1/5 …… + 1/99 - 1/100 的值,打印出结果
/*
思路:
1. 从上述表达式可以分析出:该表达式主要由100项,奇数项为正,偶数项为负
2. 设置一个循环从1~100,给出表达式中的每一项:1.0/i, 注意此处不能使用1,否则结果全部为0
奇数项为正,偶数项为负,然后将所有的项相加即可
*/
//方法一:然后使用flag标记控制奇偶项
int main()
{
int i = 0;
double sum = 0.0;
int flag = 1;
for(i=1; i<=100; i++)
{
sum += flag*1.0/i;
flag = -flag;
}
printf("%lf\n", sum);
return 0;
}
//方法二:
int main()
{
float sum = 0.0f;
int i = 0;
for (i = 1; i <= 100; i++)
{
if (i % 2 == 0)
{
sum -= 1.0 / i;
}
else
{
sum += 1.0 / i;
}
}
printf("%f\n", sum);
return 0;
}
题目名称:
求最大值
题目内容:
求10 个整数中最大值
/*
思路:
1. 采用循环的方式输入一个数组
2. 假设第一个数为最大值,采用循环的方式依次获取数组中的每个元素,与max进行比较,如果arr[i]大于 max,更新max标记的最大值,数组遍历结束后,max中保存的即为数组中的最大值。
*/
int main()
{
int arr[10] = { 0 };
int i = 0;
for (i = 0; i < 10; i++)
{
scanf("%d", &arr[i]);
}
//假设第一个数为最大值
int max = arr[0];
for (i = 0; i < 10; i++)
{
if (max < arr[i])
{
max = arr[i];
}
}
printf("%d\n", max);
return 0;
}
题目名称:
乘法口诀表
题目内容:
在屏幕上输出9*9乘法口诀表
/*
思路:
两个循环进行控制
外层循环控制打印多少行
内部循环控制每行打印多少个表达式以及表达式内容,
*/
int main()
{
int i = 0;
int j = 0;
for (i = 1; i < 10; i++)
{
for (j = 1; j <= i; j++)
{
printf("%d * %d = %2d ", i, j, i * j);
}
printf("\n");
}
return 0;
}
题目名称:
猜数字游戏
void menu()
{
printf("********************************\n");
printf("******* 1. play *******\n");
printf("******* 0. exit *******\n");
printf("********************************\n");
}
void game()
{
//RAND_MAX-32767
//1.生成随机数
//讲解rand函数
int ret = rand() % 100 + 1;
int num = 0;
//2.猜数字
while (1)
{
printf("请猜数字:>");
scanf("%d", &num);
if (num == ret)
{
printf("恭喜你,猜对了\n");
break;
}
else if (num > ret)
{
printf("猜大了\n");
}
else
{
printf("猜小了\n");
}
}
}
int main()
{
int input = 0;
//讲解srand函数
srand((unsigned int)time(NULL));
do
{
menu();
printf("请选择:>");
scanf("%d", &input);
switch (input)
{
case 1:
game();
break;
case 0:
printf("退出游戏\n");
break;
default:
printf("选择错误\n");
break;
}
} while (input);
return 0;
}
题目名称:
二分查找
题目内容:
编写代码在一个整形有序数组中查找具体的某个数
要求:找到了就打印数字所在的下标,找不到则输出:找不到。
/*
二分查找:
在一个有序的序列中,找某个数据是否在该集合中,如果在打印该数据在集合中的下标,否则打印找不到
具体找的方式:
1. 找到数组的中间位置
2. 检测中间位置的数据是否与要查找的数据key相等
a: 相等,找到,打印下标,跳出循环
b: key < arr[mid], 则key可能在arr[mid]的左半侧,继续到左半侧进行二分查找
c: key > arr[mid], 则key可能在arr[mid]的右半侧,继续到右半侧进行二分查找
如果找到返回下标,否则继续,直到区间中没有元素时,说明key不在集合中,打印找不到
易错点:
1. right的右半侧区间取值,该值决定了后序的写法
2. while循环的条件是否有等号
3. 求中间位置的方法,直接相加除2容易造成溢出
4. 更改left和right的边界时,不确定是否要+1和-1
*/
// 方法一,采用[left, right] 区间
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int key = 0;
scanf("%d", &key);
int left = 0;
int right = sizeof(arr) / sizeof(arr[0]) - 1; // right位置的数据可以取到
while (left <= right) // right位置有数据,必须要添加=号
{
int mid = left + (right - left) / 2;
if (arr[mid] > key) // key小于中间位置数据,说明key可能在左半侧,需要改变右边界
{
right = mid - 1; // right位置的数据可以取到,因此right=mid-1
}
else if (arr[mid] < key)// key大于中间位置数据,说明key可能在右半侧,需要改变左边界
{
left = mid + 1; // left位置的数据可以取到,因此left=mid+1
}
else
{
printf("%d找到了,下标是:%d\n", key, mid);
break;
}
}
if (left > right)
printf("%d没找到\n", key);
return 0;
}
// 方法二,采用[left, right) 区间
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int key = 0;
scanf("%d", &key);
int left = 0;
int right = sizeof(arr) / sizeof(arr[0]); // right位置的数据取不到
while (left < right) // right位置没有数据,此处不需要添加=
{
int mid = left + (right - left) / 2;
if (arr[mid] > key) // key小于中间位置数据,说明key可能在左半侧,需要改变右边界
{
right = mid; // right位置的数据取不到,因此right=mid,不需要减1
}
else if (arr[mid] < key)// key大于中间位置数据,说明key可能在右半侧,需要改变左边界
{
left = mid + 1; // left位置的数据可以取到,因此left=mid+1
}
else
{
printf("%d找到了,下标是:%d\n", key, mid);
break;
}
}
if (left >= right)
printf("%d没找到\n", key);
return 0;
}