SPOJ-NSUBSTR - Substrings(SAM求所有长度子串的最大出现次数)

NSUBSTR - Substrings

题面翻译

你得到了一个最多由 250000 250000 250000 个小写拉丁字母组成的字符串 S S S。定义 F ( x ) F(x) F(x) S S S 的某些长度为 x x x 的子串在 S S S 中的最大出现次数。即 F ( x ) = m a x { t i m e s ( T ) } F(x)=max\{times(T)\} F(x)=max{times(T)},满足 T T T S S S 的子串且 ∣ T ∣ = x |T|=x T=x。例如当 S = a b a b a S=ababa S=ababa F ( 3 ) = 2 F(3)=2 F(3)=2 ,因为 S S S 中有一个出现 2 2 2 次的子串 a b a aba aba。 你的任务是对于每个 1 ≤ i ≤ ∣ S ∣ 1\le i \le |S| 1iS 输出 F ( i ) F(i) F(i)

题目描述

You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as the maximal number of times that some string with length x appears in S. For example for string ‘ababa’ F(3) will be 2 because there is a string ‘aba’ that occurs twice. Your task is to output F(i) for every i so that 1<=i<=|S|.

输入格式

String S consists of at most 250000 lowercase latin letters.

输出格式

Output |S| lines. On the i-th line output F(i).

样例 #1

样例输入 #1

ababa

样例输出 #1

3
2
2
1
1

题意:

给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值。求F(1)…F(Length(S))

思路:

构建 s 的 SAM,对于每个 SAM 状态 u 能表示的子串长度范围是 [ len[fa(u)] + 1, len[s] ],这些子串的出现次数等价于 cnt[u]

那么问题变成用 cnt[u] 去区间更新 [ len[fa(u)] + 1, len[u] ] 的最大值。(无脑线段树?SPOJ 时限仅 100 ms,喜提TLE。怎么优化呢?)

我们发现 f[i] 是非严格单调递减的,我们 只用 cnt[u] 去更新 f[len[u]], 然后使用推标记的方法,从后向前令 f[i] = max(f[i], f[i + 1]) 即可

代码:

#include

using namespace std;

const int N = 2.5e5 + 10, M = N << 1;
int ch[M][26], len[M], fa[M], np = 1, tot = 1;
long long cnt[M], f[N];
vector<int> g[M];
char s[N];

void extend(int c)
{
	int p = np; np = ++tot;
	len[np] = len[p] + 1, cnt[np] = 1;
	while (p && !ch[p][c]) {
		ch[p][c] = np;
		p = fa[p];
	}
	if (!p) {
		fa[np] = 1;
	}
	else {
		int q = ch[p][c];
		if (len[q] == len[p] + 1) {
			fa[np] = q;
		}
		else {
			int nq = ++tot;
			len[nq] = len[p] + 1;
			fa[nq] = fa[q], fa[q] = fa[np] = nq;
			while (p && ch[p][c] == q) {
				ch[p][c] = nq;
				p = fa[p];
			}
			memcpy(ch[nq], ch[q], sizeof ch[q]);
		}
	}
}

void dfs(int u)
{
	for (auto son : g[u]) {
		dfs(son);
		cnt[u] += cnt[son];
	}
	int l = len[fa[u]] + 1, r = len[u];
	f[r] = max(1ll * f[r], 1ll * cnt[u]);
}

signed main()
{
	scanf("%s", s);
	int n = strlen(s);
	for (int i = 0; s[i]; ++i) {
		extend(s[i] - 'a');
	}
	for (int i = 2; i <= tot; ++i) {
		g[fa[i]].emplace_back(i);
	}
	dfs(1);
	for (int i = n - 1; i >= 1; --i) {
		f[i] = max(f[i], f[i + 1]);
	}
	for (int i = 1; i <= n; ++i) {
		printf("%lld\n", f[i]);
	}

	return 0;
}

你可能感兴趣的:(数据结构,算法,数据结构)