YOLOv8之C2f模块——与YOLOv5的C3模块对比

目录

    • 一、源码对比
    • 二、结构图对比

一、源码对比

  YOLOv8完整工程代码下载:ultralytics/ultralytic
  C2f模块源码在ultralytics/nn/modules.py下,源码如下:

class C2f(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, e=1.0) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

  YOLOv5的完整工程代码下载:ultralytic/yolov5
  C3模块源码在models/common.py下,源码如下:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  • C2f模块和C3模块的对外接口保持一致,都是(ch_in, ch_out, number, shortcut, groups, expansion),方便在yolov5中直接调用C2f模块。
  • C2f模块默认不使用shortcut连接,C3模块默认使用shortcut连接,但二者在网络结构中shortcut的位置无差别,即都是在Backbone中使用shortcut连接,在Head中不使用shortcut连接,代码的调用格式有差别。

YOLOv8之C2f模块——与YOLOv5的C3模块对比_第1张图片YOLOv8之C2f模块——与YOLOv5的C3模块对比_第2张图片

二、结构图对比

YOLOv8之C2f模块——与YOLOv5的C3模块对比_第3张图片

图2-1 C3模块结构图

YOLOv8之C2f模块——与YOLOv5的C3模块对比_第4张图片

图2-2 C2f模块结构图
  • C2f模块参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。

你可能感兴趣的:(YOLO,python,深度学习)