Nvidia Jetson Xavier TensorRT尝试

在最近的项目中需要对Xavier上的tensorflow代码进行加速,然后xavier中又自带了TensorRT,所以就直接使用TensorRT进行加速。本文针对tensorflow,如果使用其他的框架需要进行相应的修改。

TensorRT简介

TensorRT是NVIDIA 推出的一款基于CUDA和cudnn的神经网络推断加速引擎,相比于一般的深度学习框架,在CPU或者GPU模式下其可提供10X乃至100X的加速,极大提高了深度学习模型在边缘设备上的推断速度。

TensorRT主要是通过两种方式对inference进行加速,一种是将模型进行融合聚合,另外一种就是调整精度,使用FP16,INT8等精度。

在Xavier平台上,预先安装了c++版本的TensorRT,所以本文不涉及TensorRT的安装

使用TensorRT的整体流程如下:

  1. 在pc端首先训练好模型,得到pb模型文件
  2. 在pc端将模型文件转化为TensorRT能够使用的模型格式,tensorflow的话将pb转化为uff格式
  3. 在xavier端使用模型文件构建出engine
  4. 在xavier端使用engine进行推理

导出pb模型文件

pb文件转化为uff文件

参考我另外一篇文章ubuntu16.04安装TensorRT5.1,安装完TensorRT后,可以使用convert-to-uff命令进行模型的转换,-o表示转化完的模型的名称

convert-to-uff model.pb -o model.uff

xavier端构建engine

这一步我觉得最苦难的是CMakeLists.txt文件的编写,需要加入cuda的一些动态库,以及TensorRT的头文件和动态库,我的CMakeLists.txt文件如下所示。这一步和下一步我都使用这份CMakeLists.txt。

cmake_minimum_required(VERSION 2.8)
project(tensorrt)
find_package(OpenCV  REQUIRED )

# 添加cuda头文件
include_directories(/usr/local/cuda/include)
# 添加tensorrt的动态库
link_libraries("/usr/lib/aarch64-linux-gnu/libnvparsers.so")
link_libraries("/usr/lib/aarch64-linux-gnu/libnvinfer.so")
# 添加cuda动态库
link_libraries("/usr/local/cuda/lib64/libcudart.so")
# 确定可执行文件名称
add_executable(tensorrt tensorrt.cpp) 
add_executable(uff_to_plan uff_to_plan.cpp)
# 添加opencv动态库
target_link_libraries(tensorrt ${OpenCV_LIBS})

然后下面是构建engine并保存的代码
在这一步有一个问题,tensorflow中输入的格式为(height,width,channel) 即HWC,但是在TensorRT中是CHW格式,这一步在转换模型的时候就自动完成了,不需要自己转换,但是最后使用tensorrt推理的时候要注意把图像的格式转换为CHW。

class Logger : public ILogger
{
    void log(Severity severity, const char *msg) override
    {
        cout << msg << endl;
    }
} gLogger;

int main(int argc, char *argv[])
{
    /* parse uff */
    IBuilder *builder = createInferBuilder(gLogger);
    INetworkDefinition *network = builder->createNetwork();
    IUffParser *parser = createUffParser();
    /* register input and output */
    parser->registerInput(inputName.c_str(), DimsCHW(3, inputHeight, inputWidth), UffInputOrder::kNCHW);
    parser->registerOutput(outputName.c_str());
    if (!parser->parse(modelName.c_str(), *network, DataType::kFLOAT))
    {
        cout << "Failed to parse UFF\n";
        builder->destroy();
        parser->destroy();
        network->destroy();
        return 1;
    }

    /* build engine */
    builder->setMaxBatchSize(maxBatchSize);
    builder->setMaxWorkspaceSize(maxWorkspaceSize);
    /* use FP16 */
    builder->setFp16Mode(true);
    // builder->setInt8Mode(true);

    ICudaEngine *engine = builder->buildCudaEngine(*network);
    /* serialize engine and write to file */
    ofstream planFile;
    planFile.open(planFilename);
    IHostMemory *serializedEngine = engine->serialize();
    planFile.write((char *)serializedEngine->data(), serializedEngine->size());
    planFile.close();

    /* break down */
    builder->destroy();
    parser->destroy();
    network->destroy();
    engine->destroy();
    serializedEngine->destroy();

    return 0;
}

使用TensorRT进行推理

在上一步中构建出了engine并进行序列化保存成了plan文件,这一步就是读取plan文件并且反序列化构建出engine,使用engine进行推理

void cvImageToTensor(const cv::Mat &image, float *tensor, nvinfer1::Dims dimensions)
{
    const size_t channels = dimensions.d[0];
    const size_t height = dimensions.d[1];
    const size_t width = dimensions.d[2];
    // TODO: validate dimensions match
    const size_t stridesCv[3] = {width * channels, channels, 1};
    const size_t strides[3] = {height * width, width, 1};

    for (int i = 0; i < height; i++)
    {
        for (int j = 0; j < width; j++)
        {
            for (int k = 0; k < channels; k++)
            {
                const size_t offsetCv = i * stridesCv[0] + j * stridesCv[1] + k * stridesCv[2];
                const size_t offset = k * strides[0] + i * strides[1] + j * strides[2];
                tensor[offset] = (float)image.data[offsetCv];
            }
        }
    }
}
void solve()
{
    /* build the engine */
    ifstream planFile(planFileName);
    stringstream planBuffer;
    planBuffer << planFile.rdbuf();
    string plan = planBuffer.str();
    IRuntime *runtime = createInferRuntime(gLogger);
    ICudaEngine *engine = runtime->deserializeCudaEngine((void*)plan.data(),
        plan.size(), nullptr);
    IExecutionContext *context = engine->createExecutionContext();

    // get the input and output dimensions
    int inputBindingIndex, outputBindingIndex;
    inputBindingIndex = engine->getBindingIndex(inputName.c_str());
    outputBindingIndex = engine->getBindingIndex(outputName.c_str());
    Dims inputDims, outputDims;
    inputDims = engine->getBindingDimensions(inputBindingIndex);
    outputDims = engine->getBindingDimensions(outputBindingIndex);
    // get the input and output size
    int inputWidth, inputHeight, outputHeight, outputWidth;
    inputHeight = inputDims.d[1];
    inputWidth = inputDims.d[2];
    outputHeight = outputDims.d[1];
    outputWidth = outputDims.d[2];

    /* get the number of input and output */
    float *inputDataHost, *outputDataHost;
    size_t numInput, numOutput;
    numInput = numTensorElements(inputDims);
    numOutput = numTensorElements(outputDims);
    
    inputDataHost = (float *)malloc(numInput * sizeof(float));
    outputDataHost = (float *)malloc(numOutput * sizeof(float));
    
    /* transfer to device */
    void *inputDataDevice, *outputDataDevice;
    cudaMalloc(&inputDataDevice, numInput * sizeof(float));
    cudaMalloc(&outputDataDevice, numOutput * sizeof(float));
    if (inputDataDevice == nullptr || outputDataDevice == nullptr)
    {
        std::cerr << "Out of memory" << std::endl;
        exit(1);
    }

    void *bindings[2];
    bindings[inputBindingIndex] = inputDataDevice;
    bindings[outputBindingIndex] = outputDataDevice;

    // get the image name
    vector images;
    getImages(imageFolderName, images);

    cout << "Executing inference engine..." << endl;
    for(int i = 0; i < images.size(); ++i) {
        string imageFileName = images[i];
        cv::Mat image = cv::imread(imageFolderName + imageFileName);
        /* BGR to RGB */
        cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
        /* resize */
        cv::resize(image, image, cv::Size(inputWidth, inputHeight));
        /* convert HWC to float CHW */
        cvImageToTensor(image, inputDataHost, inputDims);
        cudaMemcpy(inputDataDevice, inputDataHost, numInput * sizeof(float), cudaMemcpyHostToDevice);
        /* execute engine */
        context->execute(kBatchSize, bindings);
        /* transfer output back to host */
        cudaMemcpy(outputDataHost, outputDataDevice, numOutput * sizeof(float), cudaMemcpyDeviceToHost);
        
        cv::Mat preds(outputHeight, outputWidth, CV_8UC1);
        TensorToImage(outputDataHost, preds, outputDims);
        // 后续处理省略
        cout << i << "/" << images.size() << " is over" << endl;
    }
    
    engine->destroy();
    context->destroy();
    free(inputDataHost);
    free(outputDataHost);
    cudaFree(inputDataDevice);
    cudaFree(outputDataDevice);
}

参考代码

  1. https://github.com/NVIDIA-AI-IOT/tf_to_trt_image_classification
  2. xavier中自带的tensorrt实例,在/usr/src/tensorrt/examples中

你可能感兴趣的:(Nvidia Jetson Xavier TensorRT尝试)