数据中台是什么?数据中台如何帮企业实现数字化转型?

数据中台是一种将企业沉淀的大量业务数据赋予价值变成数据资产,并通过持续的数据应用为企业业务服务,从而实现数据价值,让数据真正成为企业重要资产,发挥作用的系统和机制。

数据中台是什么?数据中台如何帮企业实现数字化转型?_第1张图片

数据中台 - 派可数据商业智能BI可视化分析平台

数据中台强调的是连接,企业通过数据中台提供的方法和运营机制,将数据连接起来,形成汇聚整合、提纯加工、建模处理、算法学习,再通过连接以共享数据服务的方式将复杂的数据处理过程提供给业务使用,从而实现数据与业务的连接。

用通俗的话来说,数据中台就是让企业的数据动起来的实现企业全面数据化的解决方案,主要价值在于数据服务,也就是可复用性。

其本质是因为数据从业务系统中产生并储存,而业务系统反过来也需要利用数据分析来优化改进业务流程,那么就可以把业务系统的数据存储和计算能力抽象,交给独立的数据处理平台提供储存和计算能力,这就是数据中台产生的真正原因。

建立数据中台的原因

大数据可以告诉决策者一些潜在的规律,以数据来证明或判断决策。以往我们会用数据来证明我们的决策对错,现在我们用数据来引导我们做出对的决策。在大数据时代,样本就是全体,大数据可以防止伪造和偏差。

数据中台的目标是提升效能、数据化运营、更好支持业务发展和创新,是多领域、多BU、多系统的负责协同。中台是平台化的自然演进,这种演进带来“去中心化“的组织模式,突出对能力复用、协调控制的能力,以及业务创新的差异化构建能力。

数据中台是什么?数据中台如何帮企业实现数字化转型?_第2张图片

数据分析 - 派可数据商业智能BI可视化分析平台

在企业内,无论是专题、报表或取数,当前基本是烟囱式数据生产模式或者是项目制建设方式,必然导致数据知识得不到沉淀和持续发展,从而造成模型不能真正成为可重用的组件,无法支撑数据分析的快速响应和创新。其实,业务最不需要的就是模型的稳定,一个数据模型如果一味追求稳定不变,一定程度就是故步自封,这样的做法必然导致其他的新的类似的数据模型产生。


与数据仓库的对比


数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。因此,其重点在于数据的集合。数据仓库可使用维度建模方法论从业务过程中抽象出通用维度与度量,组成数据模型,为决策分析提供通用的数据分析能力。
数据中台与数据仓库相比,至少有四大优势。
第一,数据中台强调数据业务化,让数据用起来,满足企业数据分析和应用的需求。
第二,数据中台梳理的流程比数据仓库建设更加复杂和全面。数据中台增加了以企业的全局视角来梳理数据域的环节,这是数据中台建设中很重要的一环。数据域的梳理正好体现了中台化的能力。
第三,数据中台建设的范畴远远大于数据仓库的建设,除了完成数据仓库的建模,还需要制定完善的数据治理方案,甚至在建设的过程中需要成立专门的数据治理委员会来促成复杂的数据治理工作。

数据中台是什么?数据中台如何帮企业实现数字化转型?_第3张图片

数据仓库 - 派可数据商业智能BI可视化分析平台

最重要的一点是,在数据中台的规划阶段就需要去主动迎合业务,需要全面梳理哪些业务场景需要利用数据的赋能才能形成业务闭环,因此,在建设数据中台的同时就必须着眼于业务场景的赋能。
第四,对于企业来讲,建设数据中台并不只是搭建一个能力平台。建设中台需要中台文化及相匹配的中台组织。
因此,从宏观上来讲,数据中台承担着企业重新搭建数据组织的职能,倒逼企业为了运营好数据中台而建设一套能与之匹配的数据中台组织。数据仓库则纯粹注重于系统解决方案,并不涉及组织形态。
因此,简单来说,数据仓库重在建数据,而数据中台则将建、治、管、服放到同样的高度,数据仓库只是数据中台的一个子集。


与数据湖的对比


与数据中台相关的概念还有数据湖(Data Lake)。数据湖是一种数据存储理念,作为一个集中的存储库,它可以以自然格式存储任意规模的数据,包括来自关系数据库行和列的结构化数据,XML、JSON、日志等半结构化数据,电子邮件、文档等非结构化数据,以及图像、音视频等的二进制数据,从而实现数据的集中式管理。
目前Hadoop是最常见的实现数据湖概念的技术。比如HBase可让数据湖保存海量数据,Spark可以使得数据湖批量分析数据,而Flink等可让数据湖实时接入和处理IoT数据等。


与BI的对比


BI(商业智能)是分析数据并获取洞察,进而帮助企业做出决策的一系列方法、技术和软件。相比数据仓库,BI还包含数据挖掘、数据可视化等工具,并可支持用户在一定范围内任意组合维度与指标,从而上升到支持决策的层面,而不只是作为数据仓储。

数据中台是什么?数据中台如何帮企业实现数字化转型?_第4张图片

商业智能 BI - 派可数据商业智能BI可视化分析平台

与大数据的对比


数据中台也不等于大数据。数据中台是基于大数据、人工智能等技术构建的数据采、存、通、管、用的平台。
数据中台需要以Hadoop、Spark等为代表的大数据处理技术做支撑,但绝不能将数据中台与大数据划等号。数据中台不只有大数据处理技术,还包括智能算法、与业务联动的特性、数据资产、数据工具等。


数据中台价值


数据中台不等于大数据平台,数据中台的核心工作也并不是将企业的数据全部收集起来做汇总就够了。数据中台的使命是利用大数据技术、通过全局规划来治理好企业的数据资产,让数据使用者能随时随地获取到可靠的数据。
因此,数据中台一旦建成并得以持续运营,其价值将随着时间的推移将呈指数级增长。
1. 帮助企业建立数据标准
在有数据中台之前,企业基本不会有全局的数据标准,即使有相关的数据标准,由于没有数据中台这个实体形态,数据标准也无从执行。数据中台的建设天然会帮助企业建设数据标准,包括数据建设规范和数据消费规范。
数据建设规范有诸如数据接入规范、数据建模规范、数据存储规范和数据安全规范等,数据消费规范包含数据权限规范、数据调用规范以及数据销毁规范等。这些标准都是建设数据中台时必须建立起来并依托数据中台去执行和落地的。

数据中台是什么?数据中台如何帮企业实现数字化转型?_第5张图片

数据可视化 - 派可数据商业智能BI可视化分析平台

2. 促进中台组织形成
再宏伟的企业战略规划,都离不开一套科学合理的组织去落地执行。数据中台建设将是企业宏观战略规划的一个重要部分,那么在践行数据中台建设的过程中,摆在企业第一位的问题就是如何搭建起一套能稳定护航数据中台建设及运营的数据中台班子。


3. 全面赋能业务,促使降本增效
数据中台的终极价值是降本增效,无论是建设数据标准还是形成中台组织,其核心目标都是帮助企业达成战略规划。
通过数据中台,可以更加合理地布局团队;数据从加工生产到使用的整个时间周期将大大缩短;以中台之力拉通整合企业营销、交易、服务、库存、物流等一方数据,结合二方及三方数据,以全局视角,形成强大的数据资产,滋养各业务板块。


同时有目的性地针对场景,设计出赋能场景的数据应用,帮助其从研、产、销等多个方面缩短产品研发周期,生产未来一段时间畅销的产品,精准找到愿意购买公司产品的群体,以至于增强用户对企业产品及服务的友好体验,提高用户对于企业品牌的忠诚度,降低企业运营过程中的损耗,压缩供应链端的周期等。

你可能感兴趣的:(数字化转型,商业智能,数据可视化,大数据,人工智能,数据挖掘)