关于语义分割常见的评价指标

目录

1. 介绍

2. 语义分割常见的性能指标

3. demo


1. 介绍

计算机视觉的三大任务:图像分类(识别)、图像分割、目标检测

关于图像分割可以分为三类:语义分割、实例分割、全景分割

其中,语义分割就是将图像的不同语义划分出来,图像的语义就是某一部分代表什么意思。例如,将下面图像中的飞机分割出来

实例分割就是对不同类别的分割,比如都是飞机,但是,不是同一种或者同一个飞机

而全景分割,就是前两者的综合

关于语义分割常见的评价指标_第1张图片

关于语义分割常见的评价指标_第2张图片 

2. 语义分割常见的性能指标

语义分割常见的评价指标有下面几种,global acc、mean acc、mean iou

其中,global acc是相对于逐个像素点的分割其实分割也可以看成是像素点的分割,所以global acc就是图像分类任务中的acc识别的正确率

mean acc是不同类别召回率的均值

mean iou 就是集合间的交并

一般来说,global acc不是特别重要,因为语义分割当中,前景的区域往往不是特别多。也就是说如果分割网络的预测值都是背景0的话,哪怕这个网络什么都没学到还是会有个不错的global acc

关于语义分割常见的评价指标_第3张图片

 

3. demo

因为分割也可以看出单个像素点的分类,所以这里将结果显示成混淆矩阵的形式

global acc就是分类任务中的acc

global acc = 对角线 / 矩阵的和(图像的分辨率 = 像素点的总和 = h * w)

关于语义分割常见的评价指标_第4张图片

 

mean acc 是不同类别的召回率的均值

recall : 真正label中,预测正确的比重

mean acc = 单个对角线的值 / 所在列 ,求均值

关于语义分割常见的评价指标_第5张图片

 上面需要求均值

iou 就是预测和真实的交并比,mean iou就是不同类别交并比的均值

mean iou = 单个对角线的值 / (所在列 + 所在列 - 单个对角线的值) ,求均值

关于语义分割常见的评价指标_第6张图片

 上面需要求均值

你可能感兴趣的:(#,关于,segmentation,计算机视觉,深度学习,人工智能)