15.网络爬虫—selenium验证码破解

网络爬虫—selenium验证码破解

  • 一·selenium验证码破解
    • 二·破解平台
      • 打码平台超级鹰文识别
      • 基于人工智能的定制化识别平台 —图灵
    • 三·英文数字验证码破解
      • selenium破解验证码快捷登录古诗文网
    • 四·滑动验证码破解
      • selenium滑动验证码破解网易网盾测试案例
    • 五·总结
    • 六·后记

前言
️️个人简介:以山河作礼。
️️:Python领域新星创作者,CSDN实力新星认证
​第一篇文章《1.认识网络爬虫》获得全站热榜第一,python领域热榜第一
第四篇文章《4.网络爬虫—Post请求(实战演示)》全站热榜第八
第八篇文章《8.网络爬虫—正则表达式RE实战》全站热榜第十二
第十篇文章《10.网络爬虫—MongoDB详讲与实战》全站热榜第八,领域热榜第二
第十三篇文章《13.网络爬虫—多进程详讲(实战演示)》全站热榜第十二
《Python网络爬虫》专栏累计发表十四篇文章,上榜五篇。欢迎免费订阅!欢迎大家一起学习,一起成长!!
悲索之人烈焰加身,堕落者不可饶恕。永恒燃烧的羽翼,带我脱离凡间的沉沦。

一·selenium验证码破解

网络爬虫是一种自动化程序,用于从Web页面中提取数据。然而,有些网站为了防止爬虫程序抓取数据,会加入一些验证码,使得程序无法自动化地完成数据采集任务。为了解决这个问题,我们可以使用selenium来破解验证码。

Selenium是一个开源的自动化测试工具,它可以模拟用户在浏览器中的操作,包括点击、输入等。使用selenium可以模拟用户手动输入验证码,从而实现验证码的破解

二·破解平台

首先我们介绍两个第三方破解平台:
第一款第三方打码平台是 :超级鹰

帮助开发者解决图像验证码的识别问题。它采用了最先进的图像识别技术,可以快速准确地识别各种形式的图像验证码,如数字、字母、中文、滑动拼图

第二款第三方平台是 :图灵

基于人工智能的定制化识别平台 可用于识别包括英数类型,中文类型,滑块类型等验证码,

打码平台超级鹰文识别

  • 超级鹰是一款第三方打码平台,可以帮助开发者解决图像验证码的识别问题。它采用了最先进的图像识别技术,可以快速准确地识别各种形式的图像验证码,如数字、字母、中文、滑动拼图等。
  • 超级鹰提供了简单易用的API接口,开发者只需调用接口即可将验证码提交给超级鹰进行识别,并获得识别结果。此外,超级鹰还提供了多种识别方式,如手动识别、自动识别、多人协作等,可以满足不同的识别需求。
  • 超级鹰的图文识别功能可以识别包含文字图片的验证码,比如滑动拼图验证码。它可以先将验证码图片拆分成多个小块,再对每个小块进行识别,最后将结果合并起来得到整个验证码的识别结果。这种识别方式可以大大提高验证码的识别准确率。

1.首先我们登录注册,方便我们后面使用
15.网络爬虫—selenium验证码破解_第1张图片
2.选择我们需要的价格体系,待会也会用到
15.网络爬虫—selenium验证码破解_第2张图片
3.Python语言Demo下载
15.网络爬虫—selenium验证码破解_第3张图片
4.获取软件Key和软件ID
15.网络爬虫—selenium验证码破解_第4张图片

15.网络爬虫—selenium验证码破解_第5张图片

基于人工智能的定制化识别平台 —图灵

主页如下,包含各种验证码识别
15.网络爬虫—selenium验证码破解_第6张图片
识别接口说明
识别接口
在这里插入图片描述

识别请求参数说明
15.网络爬虫—selenium验证码破解_第7张图片

识别返回结果说明
15.网络爬虫—selenium验证码破解_第8张图片
python API调用代码

import base64
import json
import requests

# 复制以下代码,只需填入自己的账号密码、待识别的图片路径即可。
# 关于ID:选做识别的模型ID。

def b64_api(username, password, img_path, ID):
    with open(img_path, 'rb') as f:
        b64_data = base64.b64encode(f.read())
    b64 = b64_data.decode()
    data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
    data_json = json.dumps(data)
    result = json.loads(requests.post("http://www.tulingcloud.com/tuling/predict", data=data_json).text)
    return result

if __name__ == "__main__":
    img_path = r"C:/Users/Administrator/Desktop/file.jpg"
    result = b64_api(username="你的账号", password="你的密码", img_path=img_path, ID="你选用的模型ID(8位数字)")
    print(result)

到此为止,我们认识了两种用于破解验证码的平台,我们现在实战操作,方便大家理解学习

三·英文数字验证码破解

selenium破解验证码快捷登录古诗文网

我们来看一下我们的目标
15.网络爬虫—selenium验证码破解_第9张图片
1.使用selenium自动化登录目标网站

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By

service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
driver = webdriver.Chrome(service=service)

url = 'https://so.gushiwen.cn/user/login.aspx?from=http://so.gushiwen.cn/user/collect.aspx'
driver.get(url)

2.通过行为链,输入账号密码,因为我没有注册,所以随便输入的,不过影响不大,我们需要的是输入正确的验证码。

# 账号输入
driver.find_element(By.ID, 'email').send_keys('xxxxx')
# 密码输入
driver.find_element(By.ID, 'pwd').send_keys('xxxx')

3.然后获取验证码的照片到本地,方便我们待会调用接口来破解。

img_code = driver.find_element(By.ID, 'imgCode')
img_code.screenshot('img.png')  # 保存成图片

15.网络爬虫—selenium验证码破解_第10张图片

4.调用接口,来破解验证码。

from chaojiying import Chaojiying_Client

chaojiying = Chaojiying_Client('xxxx', 'xxxxx', '924117')  # 用户中心>>软件ID 生成一个替换 96001
image = open('img.png', 'rb')  # 本地图片文件路径 来替换 a.jpg 有时WIN系统须要//
pic_str = (chaojiying.PostPic(image.read(), 1004)['pic_str'])
image.close()

driver.find_element(By.ID, 'code').send_keys(pic_str)

我们的目标就完成了,是不是很简单,后期把账号密码换成注册过的,就能实现自动登录和验证了

完整代码:

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By

service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
driver = webdriver.Chrome(service=service)

url = 'https://so.gushiwen.cn/user/login.aspx?from=http://so.gushiwen.cn/user/collect.aspx'
driver.get(url)

# 账号输入
driver.find_element(By.ID, 'email').send_keys('xxxxx')
# 密码输入
driver.find_element(By.ID, 'pwd').send_keys('xxxx')
# 获取验证码
img_code = driver.find_element(By.ID, 'imgCode')
img_code.screenshot('img.png')  # 保存成图片


from chaojiying import Chaojiying_Client

chaojiying = Chaojiying_Client('*****', '*****', '924117')  # 用户中心>>软件ID 生成一个替换 96001
image = open('img.png', 'rb')  # 本地图片文件路径 来替换 a.jpg 有时WIN系统须要//
pic_str = (chaojiying.PostPic(image.read(), 1004)['pic_str'])
image.close()

driver.find_element(By.ID, 'code').send_keys(pic_str)

input()

四·滑动验证码破解

selenium滑动验证码破解网易网盾测试案例

我们来看一下我们的目标
15.网络爬虫—selenium验证码破解_第11张图片
1.思路和破解英数验证码一样,使用selenium自动打开网址,然后通过行为链点击到上图这个页面。

service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
driver = webdriver.Chrome(service=service)
driver.set_window_size(1100, 800)  # 将浏览器窗口大小设置为宽1100像素,高800像素。

url = 'https://dun.163.com/trial/sense'
driver.get(url)
print(driver.page_source)
wait = WebDriverWait(driver, 20)  # 等待20秒,有数据就进行操作,没有就报错
wait.until(PE((By.XPATH, '/html/body/main/div[1]/div/div[2]/div[2]/ul/li[2]'))).click()  # 点击可疑用户-滑动拼图

js = f'window.scrollTo(0,{300})'
driver.execute_script(js)  # 将当前页面滚动到垂直方向上300像素的位置。

2.然后我们对出现的验证码进行截图:


# 点击验证码位置,方便弹出验证码图框
wait.until(PE((By.XPATH,
               '/html/body/main/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/div[3]/div/div/div[1]/div[1]'))).click()

sleep(3)  # 休眠三秒,方便我们截图,防止验证码出现不及时

# 截图网页
driver.save_screenshot("html.png")

# 剪切滑动部分
img = Image.open("html.png")

# 剪切验证码的位置   图片的左上角和右下角 x和y轴
cropped = img.crop((563, 380, 1012, 608))

# 保存剪切的验证码照片
cropped.save("yzm.png")

15.网络爬虫—selenium验证码破解_第12张图片

15.网络爬虫—selenium验证码破解_第13张图片
15.网络爬虫—selenium验证码破解_第14张图片

15.网络爬虫—selenium验证码破解_第15张图片

3.调用ApI接口对截取的验证码进行识别


# api接口

def b64_api(username, password, img_path, ID):  # 账户  密码  照片 ID
    with open(img_path, 'rb') as f:
        b64_data = base64.b64encode(f.read())
    b64 = b64_data.decode()
    data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
    data_json = json.dumps(data)
    result = json.loads(requests.post("http://www.tulingtech.xyz/tuling/predict", data=data_json).text)
    return result

15.网络爬虫—selenium验证码破解_第16张图片

4.selenium 滑动线性 更加模拟人的行为进行点击

# selenium 滑动线性  更加模拟人去操作
def get_move_track(gap):
    track = []  # 移动轨迹
    current = 0  # 当前位移
    # 减速阈值
    mid = gap * 4 / 5  # 前4/5段加速 后1/5段减速
    t = 0.2  # 计算间隔
    v = 0  # 初速度
    while current < gap:
        if current < mid:
            a = 5  # 加速度为+5
        else:
            a = -5  # 加速度为-5
        v0 = v  # 初速度v0
        v = v0 + a * t  # 当前速度
        move = v0 * t + 1 / 2 * a * t * t  # 移动距离
        current += move  # 当前位移
        track.append(round(move))  # 加入轨迹
    return track

5.讲破解出的数据交给代码,让他帮助我们输入并且通过行为链来拖动滑块填充拼图,完成验证码的验证。


x = int(result['data']['滑块']['X坐标值'])
q = int(result['data']['缺口']['X坐标值'])
ranges = int((q - x) * 0.68)

move_track = get_move_track(ranges)  # 将结果交给滑动线性函数

# 滑动代码

element = wait.until(PE((By.CLASS_NAME, 'yidun_jigsaw')))  # 滑块

ActionChains(driver).click_and_hold(element).perform()  # 通过行为链,按住它,然后执行
for i in move_track:  # 循环每次滑动的距离
    # 执行移动
    ActionChains(driver).move_by_offset(i, 0).perform()
ActionChains(driver).release().perform()  # 松开按键,完成滑动

运行结果:

智能无感知验证码_智能验证码_验证码API_在线体验

完整代码:

import base64
import json
from time import sleep
import requests
from PIL import Image  # pillow
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support.expected_conditions import presence_of_element_located as PE
from selenium.webdriver.support.ui import WebDriverWait

service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
driver = webdriver.Chrome(service=service)
driver.set_window_size(1100, 800)  # 将浏览器窗口大小设置为宽1100像素,高800像素。

url = 'https://dun.163.com/trial/sense'
driver.get(url)
print(driver.page_source)
wait = WebDriverWait(driver, 20)  # 等待20秒,有数据就进行操作,没有就报错
wait.until(PE((By.XPATH, '/html/body/main/div[1]/div/div[2]/div[2]/ul/li[2]'))).click()  # 点击可疑用户-滑动拼图

js = f'window.scrollTo(0,{300})'
driver.execute_script(js)  # 将当前页面滚动到垂直方向上300像素的位置。

# 点击验证码位置,方便弹出验证码图框
wait.until(PE((By.XPATH,
               '/html/body/main/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/div[3]/div/div/div[1]/div[1]'))).click()

sleep(3)  # 休眠三秒,方便我们截图,防止验证码出现不及时

# 截图网页
driver.save_screenshot("html.png")

# 剪切滑动部分
img = Image.open("html.png")

# 剪切验证码的位置   图片的左上角和右下角 x和y轴
cropped = img.crop((563, 380, 1012, 608))

# 保存剪切的验证码照片
cropped.save("yzm.png")


# 调用api接口对照片验证码进行识别

def b64_api(username, password, img_path, ID):  # 账户  密码  照片 ID
    with open(img_path, 'rb') as f:
        b64_data = base64.b64encode(f.read())
    b64 = b64_data.decode()
    data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
    data_json = json.dumps(data)
    result = json.loads(requests.post("http://www.tulingtech.xyz/tuling/predict", data=data_json).text)
    return result


# 78915616

result = b64_api('****', '*****', "yzm.png", '78915616')

# 输出滑块和缺口的位置参数
print(result)


# selenium 滑动线性  更加模拟人去操作
def get_move_track(gap):
    track = []  # 移动轨迹
    current = 0  # 当前位移
    # 减速阈值
    mid = gap * 4 / 5  # 前4/5段加速 后1/5段减速
    t = 0.2  # 计算间隔
    v = 0  # 初速度
    while current < gap:
        if current < mid:
            a = 5  # 加速度为+5
        else:
            a = -5  # 加速度为-5
        v0 = v  # 初速度v0
        v = v0 + a * t  # 当前速度
        move = v0 * t + 1 / 2 * a * t * t  # 移动距离
        current += move  # 当前位移
        track.append(round(move))  # 加入轨迹
    return track


x = int(result['data']['滑块']['X坐标值'])
q = int(result['data']['缺口']['X坐标值'])
ranges = int((q - x) * 0.68)

move_track = get_move_track(ranges)  # 将结果交给滑动线性函数

# 滑动代码

element = wait.until(PE((By.CLASS_NAME, 'yidun_jigsaw')))  # 滑块

ActionChains(driver).click_and_hold(element).perform()  # 通过行为链,按住它,然后执行
for i in move_track:  # 循环每次滑动的距离
    # 执行移动
    ActionChains(driver).move_by_offset(i, 0).perform()
ActionChains(driver).release().perform()  # 松开按键,完成滑动

input()

五·总结

使用selenium破解验证码需要模拟用户操作,包括手动输入验证码和提交表单等。验证码的设计越来越复杂,破解难度也越来越大。因此,在使用selenium破解验证码时,需要根据具体情况选择合适的方法

六·后记

本专栏所有文章是博主学习笔记,仅供学习使用,爬虫只是一种技术,希望学习过的人能正确使用它。
博主也会定时一周三更爬虫相关技术更大家系统学习,如有问题,可以私信我,没有回,那我可能在上课或者睡觉,写作不易,感谢大家的支持!!

你可能感兴趣的:(Python网络爬虫,爬虫,selenium,python)