强烈推荐,刷PTA的朋友都认识一下柳神–PTA解法大佬
不刷也可以认识一下
本文由参考于柳神博客写成
柳神的CSDN博客,这个可以搜索文章
柳神的个人博客,这个没有广告,但是不能搜索
还有就是非常非常有用的 算法笔记 全名是
算法笔记 上级训练实战指南 //这本都是PTA的题解算法笔记
PS 今天也要加油鸭
The “eight queens puzzle” is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - “Eight queens puzzle”.)
Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1,Q2,⋯,Q**N), where Q**i is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens’ solution.
Figure 1 | Figure 2 |
Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format “N Q1 Q2 … Q**N”, where 4≤N≤1000 and it is guaranteed that 1≤Q**i≤N for all i=1,⋯,N. The numbers are separated by spaces.
For each configuration, if it is a solution to the N queens problem, print YES
in a line; or NO
if not.
4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4结尾无空行
YES
NO
NO
YES结尾无空行
queen 女王
Puzzle 困惑
threaten each other
threaten 威胁
diagonal 对角线
column 列
row 行
简单来说,就是让你判断一下是不是Not Queens
然后还有一点要注意的是,
那个列是从右到左的
然后就是让你判断会不会打起来
棋子是不是同一行,同一列,是不是同一个对角线
#include
#include
#include
using namespace std;
int main(void) {
int K=0,t=0,N=0;
scanf("%d", &K);
set<int> Test_Dig;
set<int> Test_row;
for (int j = 0; j < K; ++j) {
scanf("%d", &N);
for (int i = 0; i < N; ++i) {
scanf("%d", &t);
Test_row.insert(t);
Test_Dig.insert(i - t);
}
if (Test_Dig.size() != N || Test_row.size() != N) printf("NO");
else printf("YES");
if (j != K - 1) printf("\n");
Test_row.clear();
Test_Dig.clear();
}
return 0;
}