参考网址:Kubeflow-K8S的机器学习工具包,太牛了! - 知乎
Kubeflow是Kubenetes的机器学习工具包。Kubeflow是运行在k8s之上的一套技术栈,这套技术栈包含了很多组件,组件之间的关系比较松散,我们可以配合起来用,也可以单独用其中的一部分。下图为Kuberflow官网上所展示的架构图:
当我们开发和部署ML系统时,ML工作流程通常包括几个阶段。开发ML系统是一个反复的过程。我们需要评估ML工作流各个阶段的输出,并在必要时对模型和参数进行更改,以确保模型不断产生所需的结果。
为了便于理解,下图按顺序显示了工作流程阶段,并将Kubeflow
添加到工作流中,显示在每个阶段都有哪些Kubeflow
组件有用。工作流末尾的箭头指向流程,以表示流程的迭代性质:
由此可以看出,Kubeflow的目标是基于k8S,构建一整套统一的机器学习平台,覆盖最主要的机器学习流程(数据->特征->建模->服务→监控),同时兼顾机器学习的实验探索阶段和正式的生产环境。
Kubeflow
提供了一大堆组件,涵盖了机器学习的方方面面,为了对Kubeflow
有个更直观深入的了解,先整体看一下Kubeflow
都有哪些组件,并对Kubeflow
的主要组件进行简单的介绍:
TF-Operator
,PyTorch-Operator
,Caffe2-Operator
,MPI-Operator
,MXNet-Operator
)Kubeflow
提供基于TFServing
,KFServing
,Seldon
等好几种方案。由于机器学习框架很多,算法模型也各种各样。工业界一直缺少一种能真正统一的部署框架和方案。这方面Kubeflow
也仅仅是把常见的都集成了进来,但是并没有做更多的抽象和统一。以上,我们对Kubeflow
组件进行了系统的概括,来帮助我们对各个组件有一个基本的了解和整体的把握。趁热打铁,接下来我们详细介绍每一个组件的架构和工作流程。
Jupyter
本身包含很多组件。对于个人用户,使用JupyterLab
+ Notebook
就足够了。但是如果把Jupyter
当成一个公司级的平台来看待的话就远远不够了。这时候需要考虑的事情就比较多了,比如多用户、资源分配、数据持久化、数据隔离、高可用、权限控制等等。而这些问题恰恰是K8S的特长。因此把Jupyter和K8S结合起来使用就非常顺理成章。
JupyterHub是一个多用户的Jupyter门户,在设计之初就把多用户创建、资源分配、数据持久化等功能做成了插件模式。其工作机制如下图所示:
即然JupyterHub是个框架,因此出现了各种各样的插件。比如可以单机部署利用OS用户实现多用户和数据隔离;也可以使用OAuth完成用户鉴权等。当然,将整个JupyterHub和k8s结合起来,是最完美的姿势。
下面我们再来说说Kubeflow,因为缺乏隔离和资源限制,目前仅适用数据科学家的solo场景,无法支持数据科学家团队合作场景。所以平心而论,它还未获得用户的信任。
Kubeflow将default-editor ServiceAccount 分配给Jupyter notebook Pod。该服务账户绑定到kubeflow-edit ClusterRole
,它对许多Kubernetes
资源具有命名空间范围的权限,其中包括:
因此,可以直接从Kubeflow中的Jupyter notebook创建上述Kubernetes资源。notebook中已预装了Kubernetes kubectl命令行工具,可以说也是非常简单了。
将Jupyter notebook绑定在Kubeflow中时,可以使用Fairing库使用TFJob提交训练作业。训练作业可以运行在单个节点,也可以分布在同一个Kubernetes集群上,但不能在notebook pod内部运行。通过Fairing库提交作业可以使数据科学家清楚地了解Docker容器化和pod分配等流程。
总体而言,Kubeflow-hosted notebooks
可以更好地与其他组件集成,同时提供notebook image
的可扩展性。
在Kubeflow v0.1.3
之后, pipeline
已经成为Kubeflow
的核心组件。Kubeflow的目的主要是为了简化在Kubernetes上运行机器学习任务的流程,最终希望能够实现一套完整可用的流水线,来实现机器学习从数据到模型的一整套端到端的过程。而pipeline是一个工作流平台,能够编译部署机器学习的工作流。所以从这个层面来说,pipeline能够成为Kubeflow的核心组件一点也不意外。
kubeflow/pipelines
实现了一个工作流模型。所谓工作流,或者称之为流水线(pipeline
),可以将其当做一个有向无环图(DAG
)。其中的每一个节点被称作组件(component
)。组件处理真正的逻辑,比如预处理,数据清洗,模型训练等。每一个组件负责的功能不同,但有一个共同点,即组件都是以Docker镜像的方式被打包,以容器的方式被运行的。
下图显示了Kubeflow Pipelines UI中管道的运行时执行图:
实验(experiment)是一个工作空间,在其中可以针对流水线尝试不同的配置。用户在执行的过程中可以看到每一步的输出文件,以及日志。步(step)是组件的一次运行,输出工作(step output artifacts)是在组件的一次运行结束后输出的,能被系统的前端理解并渲染可视化的文件。
下图是官方提供的Kubeflow Pipelines架构图:
看起来还是比较复杂的,但整体可以将pipeline主要划分为八部分:
流水线的定义可以分成两步,首先是定义组件,组件可以从镜像开始完全自定义。这里介绍一下自定义的方式:首先需要打包一个Docker镜像,这个镜像是组件的依赖,每一个组件的运行,就是一个Docker容器。其次需要为其定义一个python函数,描述组件的输入输出等信息,这一定义是为了能够让流水线理解组件在流水线中的结构,有几个输入节点,几个输出节点等。接下来组件的使用就与普通的组件并无二致了。
实现流水线的第二步,就是根据定义好的组件组成流水线,在流水线中,由输入输出关系会确定图上的边以及方向。在定义好流水线后,可以通过python中实现好的流水线客户端提交到系统中运行。
虽然kubeflow/pipelines
的使用略显复杂,但它的实现其实并不麻烦。整个的架构可以分为五个部分,分别是ScheduledWorkflow CRD
以及其operator
流水线前端,流水线后端,Python SDK
和persistence agent
。
ScheduledWorkflow CRD
扩展了argoproj/argo
的Workflow
定义。这也是流水线项目中的核心部分,它负责真正地在Kubernetes
上按照拓扑序创建出对应的容器完成流水线的逻辑。Python SDK
负责构造出流水线,并且根据流水线构造出 ScheduledWorkflow
的YAML
定义,随后将其作为参数传递给流水线系统的后端服务。MySQL
)和对象存储(如S3
),处理所有流水线中的CRUD
请求。Persistence agent
负责把数据从Kubernetes Master
的etcd
中sync
到后端服务的关系型数据库中,其实现的方式与CRD operator
类似,通过informer
来监听 Kubernetes apiserver
对应资源实现。Pipelines 提供机器学习流程的创建、编排调度和管理,还提供了一个Web UI。这部分主要基于Argo Workflow。我相信这会是Kubeflow后续要大力发展的部分。