如何定位Spark数据倾斜问题,解决方案

文章目录

  • 前言
  • 一、数据倾斜和数据过量
  • 二、 数据倾斜的表现
  • 三、定位数据倾斜问题
    • 定位思路:查看任务-》查看Stage-》查看代码
  • 四、7种典型的数据倾斜场景
    • 解决方案一:聚合元数据
    • 解决方案二:过滤导致倾斜的key
    • 解决方案三:提高shuffle操作中的reduce并行度
    • 解决方案四:使用随机key实现双重聚合
    • 解决方案五:将reduce join转换为map join
    • 解决方案六:sample采样对倾斜key单独进行join
    • 解决方案七:使用随机数以及扩容进行join
  • 总结


前言

在Spark任务运行过程中,数据倾斜的情况是比较常见的,通常解决的方法有:修改任务的并行度或是将key打散的方式进行优化,下面循序渐进地介绍几种常见的倾斜场景和解决方案。

一、数据倾斜和数据过量

Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题

例如,reduce点一共要处理100万条数据,第一个和第二个task分别被分配到了1万条数据,计算5分钟内完成,第三个task分配到了98万数据,此时第三个task可能需要10个小时完成,这使得整个Spark作业需要10个小时才能运行完成,这就是数据倾斜所带来的后果数据倾斜俩大直接致命后果
1)数据倾斜直接会导致一种情况:Out Of Memory
2)运行速度慢
如何定位Spark数据倾斜问题,解决方案_第1张图片
注意,要区分开数据倾斜与数据量过量这两种情况,数据倾斜是指少数task被分配了绝大多数的数据,因此少数task运行缓慢;数据过量是指所有task被分配的数据量都很大,相差不多,所有task都运行缓慢

二、 数据倾斜的表现

1)Spark作业的大部分task都执行迅速,只有有限的几个task执行的非常慢,此时可能出现了数据倾斜,作业可以运行,但是运行得非常慢

2)Spark作业的大部分task都执行迅速,但是有的task在运行过程中会突然报出OOM,反复执行几次都在某一个task报出OOM错误,此时可能出现了数据倾斜,作业无法正常运行

三、定位数据倾斜问题

定位思路:查看任务-》查看Stage-》查看代码

某个task执行特别慢的情况
某个task莫名其妙内存溢出的情况
查看导致数据倾斜的key的数据分布情况
1)查阅代码中的shuffle算子,例如reduceByKey、countByKey、groupByKey、distinct、aggregateByKey、join、cogroup、repartition等算子,根据代码逻辑判断此处是否会出现数据倾斜
2)查看Spark作业的log文件,log文件对于错误的记录会精确到代码的某一行,可以根据异常定位到的代码位置来明确错误发生在第几个stage,对应的shuffle算子是哪一个

四、7种典型的数据倾斜场景

1)数据源中的数据分布不均匀,Spark需要频繁交互
2)数据集中的不同Key由于分区方式,导致数据倾斜
3)JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)
4)聚合操作中,数据集中的数据分布不均匀(主要)
5)JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀
6)JOIN操作中,两个数据集都比较大,有很多Key的数据分布不均匀
7)数据集中少数几个key数据量很大,不重要,其他数据均匀

解决方案一:聚合元数据

1)避免shuffle过程
绝大多数情况下,Spark作业的数据来源都是Hive表,这些Hive表基本都是经过ETL之后的昨天的数据为了避免数据倾斜,我们可以考虑避免shuffle过程,如果避免了shuffle过程,那么从根本上就消除了发生数据倾斜问题的可能

如果Spark作业的数据来源于Hive表,那么可以先在Hive表中对数据进行聚合,例如按照key进行分组,将同一key对应的所有value用一种特殊的格式拼接到一个字符串里去,这样,一个key就只有一条数据了;之后,对一个key的所有value进行处理时,只需要进行map操作即可,无需再进行任何的shuffle操作。通过上述方式就避免了执行shuffle操作,也就不可能会发生任何的数据倾斜问题。

对于Hive表中数据的操作,不一定是拼接成一个字符串,也可以是直接对key的每一条数据进行累计计算要区分开,处理的数据量大和数据倾斜的区别
2)缩小key粒度(增大数据倾斜可能性,降低每个task的数据量)
key的数量增加,可能使数据倾斜更严重
3)增大key粒度(减小数据倾斜可能性,增大每个task的数据量)
如果没有办法对每个key聚合出来一条数据,在特定场景下,可以考虑扩大key的聚合粒度
例如,目前有10万条用户数据,当前key的粒度是(省,城市,区,日期),现在我们考虑扩大粒度,将key的粒度扩大为(省,城市,日期),这样的话,key的数量会减少,key之间的数据量差异也有可能会减少,由此可以减轻数据倾斜的现象和问题。
(此方法只针对特定类型的数据有效,当应用场景不适宜时,会加重数据倾斜)

解决方案二:过滤导致倾斜的key

如果在Spark作业中允许丢弃某些数据,那么可以考虑将可能导致数据倾斜的key进行过滤,滤除可能导
致数据倾斜的key对应的数据,这样,在Spark作业中就不会发生数据倾斜了

解决方案三:提高shuffle操作中的reduce并行度

当方案一和方案二对于数据倾斜的处理没有很好的效果时,可以考虑提高shuffle过程中的reduce端并行度,reduce端并行度的提高就增加了reduce端task的数量,那么每个task分配到的数据量就会相应减少,由此缓解数据倾斜问题
1)reduce端并行度的设置
在大部分的shuffle算子中,都可以传入一个并行度的设置参数,比如reduceByKey(500),这个参数会决定shuffle过程中reduce端的并行度,在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小
增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了

2)reduce端并行度设置存在的缺陷
提高reduce端并行度并没有从根本上改变数据倾斜的本质和问题(方案一和方案二从根本上避免了数据倾斜的发生),只是尽可能地去缓解和减轻shuw le reduce task的数据压力,以及数据倾斜的问题,适用于有较多key对应的数据量都比较大的情况

该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用嘴简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用在理想情况下,reduce端并行度提升后,会在一定程度上减轻数据倾斜的问题,甚至基本消除数据倾斜;但是,在一些情况下,只会让原来由于数据倾斜而运行缓慢的task运行速度稍有提升,或者避免了某些task的OOM问题,但是,仍然运行缓慢,此时,要及时放弃方案

解决方案四:使用随机key实现双重聚合

当使用了类似于groupByKey、reduceByKey这样的算子时,可以考虑使用随机key实现双重聚合,如下图所示
如何定位Spark数据倾斜问题,解决方案_第2张图片
首先,通过map算子给每个数据的key添加随机数前缀,对key进行打散,将原先一样的key变成不一样的key,然后进行第一次聚合,这样就可以让原本被一个task处理的数据分散到多个task上去做局部聚合;
随后,去除掉每个key的前缀,再次进行聚合此方法对于由groupByKey、reduceByKey这类算子造成的数据倾斜由比较好的效果,仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuw le操作,还得用其他的解决方案。此方法也是前几种方案没有比较好的效果时要尝试的解决方案

解决方案五:将reduce join转换为map join

正常情况下,join操作都会执行shuw le过程,并且执行的是reduce join,也就是先将所有相同的key和对应的value汇聚到一个reduce task中,然后再进行join。普通join的过程如下图所示
如何定位Spark数据倾斜问题,解决方案_第3张图片
普通的join是会走shuw le过程的,而一旦shuw le,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜

注意,RDD是并不能进行广播的,只能将RDD内部的数据通过collect拉取到Driver内存然后再进行广播
1)核心思路
不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
根据上述思路,根本不会发生shuffle操作,从根本上杜绝了join操作可能导致的数据倾斜问题
当join操作有数据倾斜问题并且其中一个RDD的数据量较小时,可以优先考虑这种方式,效果非常好。
map join的过程如下图所示
如何定位Spark数据倾斜问题,解决方案_第4张图片
2)不使用场景分析
由于Spark的广播变量是在每个Executor中保存一个副本,如果两个RDD数据量都比较大,那么如果将一个数据量比较大的RDD做成广播变量,那么很有可能会造成内存溢出

解决方案六:sample采样对倾斜key单独进行join

在Spark中,如果某个RDD只有一个key,那么在shuw le过程中会默认将此key对应的数据打散,由不同的reduce端task进行处理当由单个key导致数据倾斜时,可有将发生数据倾斜的key单独提取出来,组成一个RDD,然后用这个原本会导致倾斜的key组成的RDD根其他RDD单独join,此时,根据Spark的运行机制,此RDD中的数据会在shuffle阶段被分散到多个task中去进行join操作。倾斜key单独join的流程如下图所示
如何定位Spark数据倾斜问题,解决方案_第5张图片
1)适用场景分析
对于RDD中的数据,可以将其转换为一个中间表,或者是直接使用countByKey()的方式,看一个这个RDD中各个key对应的数据量,此时如果你发现整个RDD就一个key的数据量特别多,那么就可以考虑使用这种方法
当数据量非常大时,可以考虑使用sample采样获取10%的数据,然后分析这10%的数据中哪个key可能会导致数据倾斜,然后将这个key对应的数据单独提取出来
2)不适用场景分析
如果一个RDD中导致数据倾斜的key很多,那么此方案不适用

解决方案七:使用随机数以及扩容进行join

如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了,对于join操作,我们可以考虑对其中一个RDD数据进行扩容,另一个RDD进行稀释后再join
我们会将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,需要对整个RDD进行数据扩容,对内存资源要求很高
1)核心思想
选择一个RDD,使用flatMap进行扩容,对每条数据的key添加数值前缀(1~N的数值),将一条数据映射为多条数据;(扩容)
选择另外一个RDD,进行map映射操作,每条数据的key都打上一个随机数作为前缀(1~N的随机数);
(稀释)将两个处理后的RDD,进行join操作
如何定位Spark数据倾斜问题,解决方案_第6张图片
2)局限性
如果两个RDD都很大,那么将RDD进行N倍的扩容显然行不通
使用扩容的方式只能缓解数据倾斜,不能彻底解决数据倾斜问题

3)使用方案七对方案六进一步优化分析
当RDD中有几个key导致数据倾斜时,方案六不再适用,而方案七又非常消耗资源,此时可以引入方案七的思想完善方案六
(1)对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key
(2)然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD
(3)接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD
(4)再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了
(5)而另外两个普通的RDD就照常join即可
(6)最后将两次join的结果使用union算子合并起来即可,就是最终的join结果

总结

如何定位Spark数据倾斜问题和解决方案介绍到这里啦~

你可能感兴趣的:(spark,大数据,分布式)