c++手写矩阵类实现矩阵的运算,只做理解用,实际工程还是用现成的库。
类实现的矩阵功能有:
高斯消元法
//main.cpp
/*
author: cclplus
date:2020/10/25
if you think it is necessary to reward me,
my qq number is 641208111
*/
//#include
//#include //输入输出接口
#include
#include
using namespace std;
int main()
{
for(int i=0;i<10;i++)
{
cout<< i;
printf("\n");//换行
}
cout << "\n";//换行
cout << "按任意键继续……";
cout << "\n";
cout << "按任意键继续……";
/*Matrix A = Matrix(3, 1);
cin >> A;
A.Show();
Matrix b = Matrix(3,2,1.5);
cin >> b;
b.Show();*/
Matrix C = Matrix(3, 3, 2);
Matrix D = Matrix(3, 3, 4);
Matrix S = Matrix::Hadamard(C, D);
//C.Show();
//D.Show();
//S.Show();
cin.clear();
cin.sync();
cin.get();
/*
Matrix A = Matrix(3, 3);
cin >> A;
Matrix b = Matrix(3, 1);
cin >> b;
Matrix x = Matrix::Solve(A, b);
x.Show();
*/
system("pause");
}
/*
author: cclplus
date:2020/10/25
if you think it is necessary to reward me,
my qq number is 641208111
*/
//matrix.h
#ifndef __MATRIX_CLL_H__
#define __MATRIX_CCL_H__
#include "pch.h"
class Matrix {
private:
int rows_num, cols_num;
double **p;
void initialize();//初始化矩阵
public:
Matrix(int, int);
Matrix(int, int, double);//预配分空间
virtual ~Matrix();//析构函数应当是虚函数,除非此类不用做基类
Matrix& operator=(const Matrix&);//矩阵的复制
Matrix& operator=(double *);//将数组的值传给矩阵
Matrix& operator+=(const Matrix&);//矩阵的+=操作
Matrix& operator-=(const Matrix&);//-=
Matrix& operator*=(const Matrix&);//*=
Matrix operator*(const Matrix & m)const;
static Matrix Hadamard(const Matrix & m, const Matrix & n);
static Matrix Solve(const Matrix&, const Matrix&);//求解线性方程组Ax=b
void Show() const;//矩阵显示
void swapRows(int, int);
double det();//求矩阵的行列式
double Point(int i, int j) const;
static Matrix inv(Matrix);//求矩阵的逆矩阵
static Matrix eye(int);//制造一个单位矩阵
int row() const;
int col() const;
static Matrix T(const Matrix & m);//矩阵转置的实现,且不改变矩阵
Matrix gaussianEliminate();//高斯消元法
friend std::istream& operator>>(std::istream&, Matrix&);//实现矩阵的输入
};
#endif
/*
author: cclplus
date:2020/10/25
if you think it is necessary to reward me,
my qq number is 641208111
*/
//matrix.cpp
#include "matrix.h"
using namespace std;
const double EPS = 1e-10;
void Matrix::initialize()
{
p = new double*[rows_num];//分配rows_num个指针
int i;
for (i = 0; i < rows_num; ++i) {
p[i] = new double[cols_num];//为p[i]进行动态内存分配,大小为cols
}
}
//声明一个全0矩阵
Matrix::Matrix(int rows, int cols)
{
rows_num = rows;
cols_num = cols;
initialize();
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] = 0;
}
}
}
//声明一个值全部为value的矩阵
Matrix::Matrix(int rows,int cols, double value)
{
rows_num = rows;
cols_num = cols;
initialize();
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] = value;
}
}
}
//析构函数
Matrix::~Matrix()
{
for (int i = 0; i < rows_num; ++i) {
delete[] p[i];
}
delete[] p;
}
//矩阵的复制
Matrix & Matrix::operator=(const Matrix &m)
{
// TODO: 在此处插入 return 语句
if (this == &m) {
return *this;
}
if (rows_num != m.rows_num || cols_num != m.cols_num) {
for (int i = 0; i < rows_num; ++i) {
delete[] p[i];
}
delete[] p;
rows_num = m.rows_num;
cols_num = m.cols_num;
initialize();
}
//return Matrix(1, 1);
}
//将数组的值传递给矩阵(要求矩阵的大小已经被声明过了)
Matrix& Matrix::operator=(double *a) {
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] = *(a + i * cols_num + j);
}
}
return *this;
}
//+=操作
Matrix& Matrix::operator+=(const Matrix& m)
{
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] += m.p[i][j];
}
}
return *this;
}
//实现-=
Matrix& Matrix::operator-=(const Matrix& m)
{
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] -= m.p[i][j];
}
}
return *this;
}
//实现*=
Matrix& Matrix::operator*=(const Matrix& m)
{
Matrix temp(rows_num, m.cols_num);//若C=AB,则矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
for (int i = 0; i < temp.rows_num; i++) {
for (int j = 0; j < temp.cols_num; j++) {
for (int k = 0; k < cols_num; k++) {
temp.p[i][j] += (p[i][k] * m.p[k][j]);
}
}
}
*this = temp;
return *this;
}
//实现矩阵的乘法
Matrix Matrix::operator*(const Matrix & m)const {
Matrix ba_M(rows_num, m.cols_num, 0.0);
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < m.cols_num; j++) {
for (int k = 0; k < cols_num; k++) {
ba_M.p[i][j] += (p[i][k] * m.p[k][j]);
}
}
}
return ba_M;
}
Matrix Matrix::Hadamard(const Matrix & m, const Matrix & n)
{
if ((m.cols_num != n.cols_num) || (m.rows_num != n.rows_num)) {
cout << "矩阵必须行列相等,否则无法进行Hadmard乘积" << endl;
abort();
}
Matrix ans(m.rows_num, m.cols_num, 0.0);
for (int i = 0; i < m.rows_num; i++) {
for (int j = 0; j < m.cols_num; j++) {
ans.p[i][j] = m.p[i][j] * n.p[i][j];
}
}
return ans;
}
//解方程Ax=b
Matrix Matrix::Solve(const Matrix &A, const Matrix &b)
{
//高斯消去法实现Ax=b的方程求解
for (int i = 0; i < A.rows_num; i++) {
if (A.p[i][i] == 0) {
cout << "请重新输入" << endl;
}
for (int j = i + 1; j < A.rows_num; j++) {
for (int k = i + 1; k < A.cols_num; k++) {
A.p[j][k] -= A.p[i][k] * (A.p[j][i] / A.p[i][i]);
if (abs(A.p[j][k]) < EPS)
A.p[j][k] = 0;
}
b.p[j][0] -= b.p[i][0] * (A.p[j][i] / A.p[i][i]);
if (abs(A.p[j][0]) < EPS)
A.p[j][0] = 0;
A.p[j][i] = 0;
}
}
// 反向代换
Matrix x(b.rows_num, 1);
x.p[x.rows_num - 1][0] = b.p[x.rows_num - 1][0] / A.p[x.rows_num - 1][x.rows_num - 1];
if (abs(x.p[x.rows_num - 1][0]) < EPS)
x.p[x.rows_num - 1][0] = 0;
for (int i = x.rows_num - 2; i >= 0; i--) {
double sum = 0;
for (int j = i + 1; j < x.rows_num; j++) {
sum += A.p[i][j] * x.p[j][0];
}
x.p[i][0] = (b.p[i][0] - sum) / A.p[i][i];
if (abs(x.p[i][0]) < EPS)
x.p[i][0] = 0;
}
return x;
}
//矩阵显示
void Matrix::Show() const {
//cout << rows_num <<" "< EPS) && (abs(p[j][i]) > EPS)) {
flag = true;
//注:进行互换后,p[i][j]变为p[j][j],p[j][i]变为p[i][i]
//对矩阵进行行变换
double temp;
for (int k = 0; k < cols_num; k++) {
temp = p[i][k];
p[i][k] = p[j][k];
p[j][k] = temp;
}
}
}
if (flag)
return 0;
}
}
for (int i = 0; i < rows_num; i++) {
for (int j = i + 1; j < rows_num; j++) {
for (int k = i + 1; k < cols_num; k++) {
p[j][k] -= p[i][k] * (p[j][i] * p[i][i]);
}
}
}
for (int i = 0; i < rows_num; i++) {
ans *= p[i][i];
}
for (int i = 0; i < rows_num; i++) {
for (int j = 0; j < cols_num; j++) {
p[i][j] = back_up[i][j];
}
}
return ans;
}
//返回矩阵第i行第j列的数
double Matrix::Point(int i, int j) const {
return this->p[i][j];
}
//求矩阵的逆矩阵
Matrix Matrix::inv(Matrix A) {
if (A.rows_num != A.cols_num) {
std::cout << "只有方阵能求逆矩阵" << std::endl;
std::abort();//只有方阵能求逆矩阵
}
double temp;
Matrix A_B = Matrix(A.rows_num, A.cols_num);
A_B = A;//为矩阵A做一个备份
Matrix B = eye(A.rows_num);
//将小于EPS的数全部置0
for (int i = 0; i < A.rows_num; i++) {
for (int j = 0; j < A.cols_num; j++) {
if (abs(A.p[i][j]) <= EPS) {
A.p[i][j] = 0;
}
}
}
//选择需要互换的两行选主元
for (int i = 0; i < A.rows_num; i++) {
if (abs(A.p[i][i]) <= EPS) {
bool flag = false;
for (int j = 0; (j < A.rows_num) && (!flag); j++) {
if ((abs(A.p[i][j]) > EPS) && (abs(A.p[j][i]) > EPS)) {
flag = true;
for (int k = 0; k < A.cols_num; k++) {
temp = A.p[i][k];
A.p[i][k] = A.p[j][k];
A.p[j][k] = temp;
temp = B.p[i][k];
B.p[i][k] = B.p[j][k];
B.p[j][k] = temp;
}
}
}
if (!flag) {
std::cout << "逆矩阵不存在\n";
std::abort();
}
}
}
//通过初等行变换将A变为上三角矩阵
double temp_rate;
for (int i = 0; i < A.rows_num; i++) {
for (int j = i + 1; j < A.rows_num; j++) {
temp_rate = A.p[j][i] / A.p[i][i];
for (int k = 0; k < A.cols_num; k++) {
A.p[j][k] -= A.p[i][k] * temp_rate;
B.p[j][k] -= B.p[i][k] * temp_rate;
}
A.p[j][i] = 0;
}
}
//使对角元素均为1
for (int i = 0; i < A.rows_num; i++) {
temp = A.p[i][i];
for (int j = 0; j < A.cols_num; j++) {
A.p[i][j] /= temp;
B.p[i][j] /= temp;
}
}
//std::cout<<"算法可靠性检测,若可靠,输出上三角矩阵"<= 1; i--) {
for (int j = i - 1; j >= 0; j--) {
temp = A.p[j][i];
for (int k = 0; k < A.cols_num; k++) {
A.p[j][k] -= A.p[i][k] * temp;
B.p[j][k] -= B.p[i][k] * temp;
}
}
}
std::cout << "算法可靠性检测,若可靠,输出单位矩阵" << std::endl;
for (int i = 0; i < A.rows_num; i++) {
for (int j = 0; j < A.cols_num; j++) {
printf("%7.4lf\t\t", A.p[i][j]);
}
cout << endl;
}
A = A_B;//还原A
return B;//返回该矩阵的逆矩阵
}
//制造一个单位矩阵
Matrix Matrix::eye(int n) {
Matrix A(n, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
A.p[i][j] = 1;
}
else {
A.p[i][j] = 0;
}
}
}
return A;
}
//读取矩阵行列数
int Matrix::row() const {
return rows_num;
}
int Matrix::col() const {
return cols_num;
}
//实现矩阵的转置
Matrix Matrix::T(const Matrix & m)
{
int col_size = m.col();
int row_size = m.row();
Matrix mt(col_size, row_size);
for (int i = 0; i < row_size; i++) {
for (int j = 0; j < col_size; j++) {
mt.p[j][i] = m.p[i][j];
}
}
return mt;
}
//高斯消元法
Matrix Matrix::gaussianEliminate()
{
Matrix Ab(*this);
int rows = Ab.rows_num;
int cols = Ab.cols_num;
int Acols = cols - 1;
int i = 0; //跟踪行
int j = 0; //跟踪列
while (i < rows)
{
bool flag = false;
while (j < Acols && !flag)
{
if (Ab.p[i][j] != 0) {
flag = true;
}
else {
int max_row = i;
double max_val = 0;
for (int k = i + 1; k < rows; ++k)
{
double cur_abs = Ab.p[k][j] >= 0 ? Ab.p[k][j] : -1 * Ab.p[k][j];
if (cur_abs > max_val)
{
max_row = k;
max_val = cur_abs;
}
}
if (max_row != i) {
Ab.swapRows(max_row, i);
flag = true;
}
else {
j++;
}
}
}
if (flag)
{
for (int t = i + 1; t < rows; t++) {
for (int s = j + 1; s < cols; s++) {
Ab.p[t][s] = Ab.p[t][s] - Ab.p[i][s] * (Ab.p[t][j] / Ab.p[i][j]);
if (abs(Ab.p[t][s]) < EPS)
Ab.p[t][s] = 0;
}
Ab.p[t][j] = 0;
}
}
i++;
j++;
}
return Ab;
}
//实现矩阵的输入
istream& operator >> (istream& is, Matrix& m)
{
for (int i = 0; i < m.rows_num; i++) {
for (int j = 0; j < m.cols_num; j++) {
is >> m.p[i][j];
}
}
return is;
}