虚假的AI

虚假的AI有以下特点:
从不自己收集、处理、清洗、标注数据,而是找一个现有的数据集,疯狂 过拟合数据集。
科研idea主要来自于各种模块的花式排列组合,包含但不限于:各种CNN,各种RNN,各种attention,各种transformer,各种dropout,各种batchNorm,各种激活函数,各种loss function
而不是从实际问题和自然语言的现有挑战出发来思考idea
总是指望靠一个算法、一个模型可以解决所有问题
想做好真实AI,必须:
不断反馈,分析,改进。据说谷歌的搜索质量负责人Amit Singhal博士每天要看20个以上的不好搜索结果,然后持续不断的迭代改进。
面对真实环境中获取数据难,数据标注成本高,数据脏难清洗等问题
从实际问题和自然语言的现有挑战出发,设计针对问题最适合合理有效的模型
从不指望一个算法和问题可以解决所有问题,所有遇到的问题会做出合理的分析和拆解,针对各个难点设计最优解决算法,各个击破。

你可能感兴趣的:(虚假的AI)