本文作者潘唐磊,腾讯WXG(微信事业群)开发工程师,毕业于中山大学。内容有修订。
本文总结了企业微信的IM消息系统架构设计,阐述了企业业务给IM架构设计带来的技术难点和挑战,以及技术方案的对比与分析。同时总结了IM后台开发的一些常用手段,适用于IM消息系统。
* 推荐阅读:企业微信团队分享的另一篇《企业微信客户端中组织架构数据的同步更新方案优化实战》也值得一读。
学习交流:
- 即时通讯/推送技术开发交流5群:215477170 [推荐]
- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》
- 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK
(本文同步发布于:http://www.52im.net/thread-3631-1-1.html)
以下是本文内容中涉及到的技术名词缩写,具体意义如下:
企业微信作为一款办公协同的产品,聊天消息收发是最基础的功能。消息系统的稳定性、可靠性、安全性尤其重要。
消息系统的构建与设计的过程中,面临着较多的难点。而且针对toB场景的消息系统,需要支持更为复杂的业务场景。
针对toB场景的特有业务有:
如上所示,整体架构分层如下。
1)接入层:统一入口,接收客户端的请求,根据类型转发到对应的CGI层。客户端可以通过长连或者短连连接wwproxy。活跃的客户端,优先用长连接发起请求,如果长连失败,则选用短连重试。
2)CGI层:http服务,接收wwproxy的数据包,校验用户的session状态,并用后台派发的秘钥去解包,如解密失败则拒绝请求。解密成功,则把明文包体转发到后端逻辑层对应的svr。
3)逻辑层:大量的微服务和异步处理服务,使用自研的hikit rpc框架,svr之间使用tcp短连进行通信。进行数据整合和逻辑处理。和外部系统的通信,通过http协议,包括微信互通、手机厂商的推送平台等。
4)存储层:消息存储是采用的是基于levelDB模型开发msgkv。SeqSvr是序列号生成器,保证派发的seq单调递增不回退,用于消息的收发协议。
企业微信的消息收发模型采用了推拉方式,这种方式可靠性高,设计简单。
以下是消息推拉的时序图:
PS:如上图所示,发送方请求后台,把消息写入到接收方的存储,然后push通知接收方。接受方收到push,主动上来后台收消息。
不重、不丢、及时触达,这三个是消息系统的核心指标:
IM中消息分发的典型方式,一般有两种:
即:每条消息只存一份,群聊成员都读取同一份数据。
优点:节省存储容量。
缺点:
即:每条消息存多份,每个群聊成员在自己的存储都有一份。
优点:
同一条消息,在每个人的视角会有不同的表现。例如:回执消息,发送方能看到已读未读列表,接受方只能看到是否已读的状态。云端删除某条群消息,在自己的消息列表消失,其他人还是可见。
缺点:存储容量的增加。
企业微信采用了扩散写的方式,消息收发简单稳定。存储容量的增加,可以通过冷热分离的方案解决,冷数据存到廉价的SATA盘,扩散读体验稍差,协议设计也相对复杂些。
下图是扩散写的协议设计:
如上图所示:
企业微信作为一款to B场景的聊天im工具,用于工作场景的沟通,有着较为明显的高峰效应(如下图所示)。
正如上图所示:工作时间上午9:00~12:00、下午14:00~18:00,是聊天的高峰,消息量剧增。工作日和节假日也会形成明显的对比。
高峰期系统压力大,偶发的网络波动或者机器过载,都有可能导致大量的系统失败。im系统对及时性要求比较高,没办法进行削峰处理。那么引入一些柔性的策略,保证系统的稳定性和可用性非常有必要。
具体的做法就是启动过载保护策略:当svr已经达到最大处理能力的时候,说明处于一个过载的状态,服务能力会随着负载的增高而急剧下降。如果svr过载,则拒绝掉部分正常请求,防止机器被压垮,依然能对外服务。通过统计svr的被调耗时情况、worker使用情况等,判定是否处于过载状态。过载保护策略在请求高峰期间起到了保护系统的作用,防止雪崩效应。
下图就是因过载被拒绝掉的请求:
上一小结中过载保护策略所带来的问题就是:系统过载返回失败,前端发消息显示失败,显示红点,会严重影响产品体验。
发消息是im系统的最基础的功能,可用性要求达到几乎100%,所以这个策略肯定需要优化。
解决方案思路就是:尽管失败,也返回前端成功,后台保证最终成功。
为了保证消息系统的可用性,规避高峰期系统出现过载失败导致前端出红点,做了很多优化。
具体策略如下:
优化后,后台的波动,前端基本没有感知。
以下是优化前后的流程对比:
由于产品形态的原因,企业微信的消息系统,会依赖很多外部模块,甚至外部系统。
例如:与微信消息互通,发送消息的权限需要放到ImUnion去做判定,ImUnion是一个外部系统,调用耗时较长。
再如:金融版的消息审计功能,需要把消息同步到审计模块,增加rpc调用。
再如:客户服务的单聊群聊消息,需要把消息同步到crm模块,增加rpc调用。为了避免外部系统或者外部模块出现故障,拖累消息系统,导致耗时增加,则需要系统解耦。
我们的方案:与外部系统的交互,全设计成异步化。
思考点:需要同步返回结果的请求,如何设计成异步化?
例如:群聊互通消息需经过ImUnion鉴权返回结果,前端用于展示消息是否成功发送。先让客户端成功,异步失败,则回调客户端使得出红点。
如果是非主流程,则异步重试保证成功,主流程不受影响,如消息审计同步功能。那么,只需要保证内部系统的稳定,发消息的主流程就可以不受影响。
解耦效果图:
企业微信的消息类型有多种:
群聊按群人数,又分成3类:
业务繁多:如果不加以隔离,那么其中一个业务的波动有可能引起整个消息系统的瘫痪。
重中之重:需要保证核心链路的稳定,就是企业内部的单聊和100人以下群聊,因为这个业务是最基础的,也是最敏感的,稍有问题,投诉量巨大。
其余的业务:互相隔离,减少牵连。按照优先级和重要程度进行隔离,对应的并发度也做了调整,尽量保证核心链路的稳定性。
解耦和隔离的效果图:
企业微信的群人数上限是10000,只要群内每个人都发一条消息,那么扩散量就是10000 * 10000 = 1亿次调用,非常巨大。
10000人投递完成需要的耗时长,影响了消息的及时性。
既然超大群扩散写量大、耗时长,那么自然会想到:超大群是否可以单独拎出来做成扩散读呢。
下面分析一下超大群设计成单副本面临的难点:
综上所述:单副本的方案代价太大。
以下将介绍我们针对万人群聊扩散写的方案,做的一些优化实践。
万人群的扩散量大,为了是消息尽可能及时到达,使用了多协程去分发消息。但是并不是无限制地加大并发度。
为了避免某个万人群的高频发消息,造成对整个消息系统的压力,消息分发以群id为维度,限制了单个群的分发并发度。消息分发给一个人的耗时是8ms,那么万人的总体耗时是80s,并发上限是5,那么消息分发完成需要16s。16s的耗时,在产品角度来看还、是可以接受的,大群对及时性不敏感。同时,并发度控制在合理范围内。
除了限制单个群id的并发度,还限制了万人群的总体并发度。单台机,小群的worker数为250个,万人群的worker数为30。
万人群的频繁发消息,worker数用满,导致队列出现积压:
由于并发限制,调用数被压平,没有请求无限上涨,系统稳定:
工作场景的聊天,多数是在小群完成,大群用于管理员发通知或者老板发红包。
大群消息有一个常见的规律:平时消息少,会突然活跃。例如:老板在群里发个大红包,群成员起哄,此时就会产生大量的消息。
消息量上涨、并发度被限制、任务处理不过来,那么队列自然就会积压。积压的任务中可能存在多条消息需要分发给同一个群的群成员。
此时:可以将这些消息,合并成一个请求,写入到消息存储,消息系统的吞吐量就可以成倍增加。
在日常的监控中,可以捕获到这种场景,高峰可以同时插入20条消息,对整个系统很友善。
比如:群人员变更、群名称变动、群设置变更,都会在群内扩散一条不可见的控制消息。群成员收到此控制消息,则向后台请求同步新数据。
举个例子:一个万人群,由于消息过于频繁,对群成员造成骚扰,部分群成员选择退群来拒绝消息,假设有1000人选择退群。那么扩散的控制消息量就是1000w,用户收到控制消息就向后台请求数据,则额外带来1000w次的数据请求,造成系统的巨大压力。
控制消息在小群是很有必要的,能让群成员实时感知群信息的变更。
但是在大群:群信息的变更其实不那么实时,用户也感觉不到。所以结合业务场景,实施降级服务,控制消息在大群可以直接丢弃、不分发,减少对系统的调用。
回执消息是办公场景经常用到的一个功能,能看到消息接受方的阅读状态。
一条回执消息的阅读状态会被频繁修改,群消息被修改的次数和群成员人数成正比。每天上亿条消息,读写频繁,请求量巨大,怎么保证每条消息在接受双方的状态是一致的是一个难点。
消息的阅读状态的存储方式两个方案。
方案一:
思路:利用消息存储,插入一条新消息指向旧消息,此新消息有最新的阅读状态。客户端收到新消息,则用新消息的内容替换旧消息的内容展示,以达到展示阅读状态的效果。
优点:复用消息通道,增量同步消息就可以获取到回执状态,复用通知机制和收发协议,前后端改造小。
缺点:
方案二:
思路:独立存储每条消息的阅读状态,消息发送者通过消息id去拉取数据。
优点:状态一致。
缺点:
企业微信采用了方案一去实现,简单可靠、改动较小:存储冗余的问题可以通过LevelDB落盘的时候merge数据,只保留最终状态那条消息即可;一致性问题下面会介绍如何解决。
上图是协议流程(referid:被指向的消息id,senderid:消息发送方的msgid):
接受方已读消息,让客户端同步感知成功,但是发送方的状态没必要同步修改。因为发送方的状态修改情况,接受方没有感知不到。那么,可以采用异步化的策略,降低同步调用耗时。
具体做法是:
客户端收到大量消息,并不是一条一条消息已读确认,而是多条消息一起已读确认。为了提高回执消息的处理效率,可以对多条消息合并处理。
如上图所示:
经过合并处理,处理效率大大提高。下图是采集了线上高峰时期的调用数据。可以看得出来,优化后的效果一共节省了44%的写入量。
发送方的消息处理方式是先把数据读起来,修改后重新覆盖写入存储。接收方有多个,那么就会并发写发送方数据,避免不了出现覆盖写的问题。
流程如下:
处理这类问题,无非就一下几种办法。
方案一:因为并发操作是分布式,那么可以采用分布式锁的方式保证一致。操作存储之前,先申请分布式锁。这种方案太重,不适合这种高频多账号的场景。
方案二:带版本号读写。一个账号的消息流只有一个版本锁,高频写入的场景,很容易产生版本冲突,导致写入效率低下。
方案三:mq串行化处理。能避免覆盖写问题,关键是在合并场景起到很好的作用。同一个账号的请求串行化,就算出现队列积压,合并的策略也能提高处理效率。
企业微信采用了方案三,相同id的用户请求串行化处理,简单易行,逻辑改动较少。
“撤回消息”相当于更新原消息的状态,是不是也可以通过referid的方式去指向呢?
回执消息分析过:通过referid指向,必须要知道原消息的msgid。
区别于回执消息:撤回消息需要修改所有接收方的消息状态,而不仅仅是发送方和单个接收方的。消息扩散写到每个接收方的消息流,各自的消息流对应的msgid是不相同的,如果沿用referid的方式,那就需要记录所有接收方的msgid。
分析:撤回消息比回执消息简单的是,撤回消息只需要更新消息的状态,而不需要知道原消息的内容。接收方的消息的appinfo都是相同的,可以通过appinfo去做指向。
协议流程:
该方案的优点明显,可靠性高,协议简单。
撤回消息的逻辑示意图:
企业微信的IM消息架构与微信类似,但是在to B业务场景面临了一些新的挑战。结合产品形态、分析策略,通过优化方案,来确保消息系统的可靠性、稳定性、安全性。
企业微信的to B业务繁杂,有很多定制化的需求,消息系统的设计需要考虑通用性和扩展性,以便支持各种需求。例如:撤回消息的方案,可以适用于消息任何属性的更新,满足更多场景。
[1] 有关IM架构设计的文章:
《浅谈IM系统的架构设计》
《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》
《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》
《一套原创分布式即时通讯(IM)系统理论架构方案》
《从零到卓越:京东客服即时通讯系统的技术架构演进历程》
《蘑菇街即时通讯/IM服务器开发之架构选择》
《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》
《微信后台基于时间序的海量数据冷热分级架构设计实践》
《微信技术总监谈架构:微信之道——大道至简(演讲全文)》
《如何解读《微信技术总监谈架构:微信之道——大道至简》》
《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》
《17年的实践:腾讯海量产品的技术方法论》
《移动端IM中大规模群消息的推送如何保证效率、实时性?》
《现代IM系统中聊天消息的同步和存储方案探讨》
《微信朋友圈千亿访问量背后的技术挑战和实践总结》
《以微博类应用场景为例,总结海量社交系统的架构设计步骤》
《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》
《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》
《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》
《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》
《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》
《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》
《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》
《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》
《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》
《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》
《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》
《社交软件红包技术解密(八):全面解密微博红包技术方案》
《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》
《社交软件红包技术解密(十):手Q客户端针对2020年春节红包的技术实践》
《社交软件红包技术解密(十一):解密微信红包随机算法(含代码实现)》
《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》
《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》
《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》
《从游击队到正规军(三):基于Go的马蜂窝旅游网分布式IM系统技术实践》
《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》
《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》
《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》
《微信后台基于时间序的新一代海量数据存储架构的设计实践》
《IM开发基础知识补课(九):想开发IM集群?先搞懂什么是RPC!》
《阿里技术分享:电商IM消息平台,在群聊、直播场景下的技术实践》
《一套亿级用户的IM架构技术干货(上篇):整体架构、服务拆分等》
《一套亿级用户的IM架构技术干货(下篇):可靠性、有序性、弱网优化等》
《从新手到专家:如何设计一套亿级消息量的分布式IM系统》
[2] QQ、微信团队原创技术文章:
《微信朋友圈千亿访问量背后的技术挑战和实践总结》
《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》
《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》
《微信团队分享:微信移动端的全文检索多音字问题解决方案》
《腾讯技术分享:Android版手机QQ的缓存监控与优化实践》
《微信团队分享:iOS版微信的高性能通用key-value组件技术实践》
《微信团队分享:iOS版微信是如何防止特殊字符导致的炸群、APP崩溃的?》
《腾讯技术分享:Android手Q的线程死锁监控系统技术实践》
《微信团队原创分享:iOS版微信的内存监控系统技术实践》
《让互联网更快:新一代QUIC协议在腾讯的技术实践分享》
《iOS后台唤醒实战:微信收款到账语音提醒技术总结》
《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》
《微信团队分享:视频图像的超分辨率技术原理和应用场景》
《微信团队分享:微信每日亿次实时音视频聊天背后的技术解密》
《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》
《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》
《腾讯团队分享:手机QQ中的人脸识别酷炫动画效果实现详解》
《腾讯团队分享 :一次手Q聊天界面中图片显示bug的追踪过程分享》
《微信团队分享:微信Android版小视频编码填过的那些坑》
《微信手机端的本地数据全文检索优化之路》
《企业微信客户端中组织架构数据的同步更新方案优化实战》
《微信团队披露:微信界面卡死超级bug“15。。。。”的来龙去脉》
《QQ 18年:解密8亿月活的QQ后台服务接口隔离技术》
《月活8.89亿的超级IM微信是如何进行Android端兼容测试的》
《以手机QQ为例探讨移动端IM中的“轻应用”》
《一篇文章get微信开源移动端数据库组件WCDB的一切!》
《微信客户端团队负责人技术访谈:如何着手客户端性能监控和优化》
《微信后台基于时间序的海量数据冷热分级架构设计实践》
《微信团队原创分享:Android版微信的臃肿之困与模块化实践之路》
《微信后台团队:微信后台异步消息队列的优化升级实践分享》
《微信团队原创分享:微信客户端SQLite数据库损坏修复实践》
《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》
《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(下篇)》
《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(上篇)》
《微信Mars:微信内部正在使用的网络层封装库,即将开源》
《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》
《开源libco库:单机千万连接、支撑微信8亿用户的后台框架基石 [源码下载]》
《微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解》
《微信团队原创分享:Android版微信后台保活实战分享(进程保活篇)》
《微信团队原创分享:Android版微信后台保活实战分享(网络保活篇)》
《Android版微信从300KB到30MB的技术演进(PPT讲稿) [附件下载]》
《微信团队原创分享:Android版微信从300KB到30MB的技术演进》
《微信技术总监谈架构:微信之道——大道至简(演讲全文)》
《微信技术总监谈架构:微信之道——大道至简(PPT讲稿) [附件下载]》
《如何解读《微信技术总监谈架构:微信之道——大道至简》》
《微信海量用户背后的后台系统存储架构(视频+PPT) [附件下载]》
《微信异步化改造实践:8亿月活、单机千万连接背后的后台解决方案》
《微信朋友圈海量技术之道PPT [附件下载]》
《微信对网络影响的技术试验及分析(论文全文)》
《一份微信后台技术架构的总结性笔记》
《架构之道:3个程序员成就微信朋友圈日均10亿发布量[有视频]》
《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》
《快速裂变:见证微信强大后台架构从0到1的演进历程(二)》
《微信团队原创分享:Android内存泄漏监控和优化技巧总结》
《全面总结iOS版微信升级iOS9遇到的各种“坑”》
《微信团队原创资源混淆工具:让你的APK立减1M》
《微信团队原创Android资源混淆工具:AndResGuard [有源码]》
《Android版微信安装包“减肥”实战记录》
《iOS版微信安装包“减肥”实战记录》
《移动端IM实践:iOS版微信界面卡顿监测方案》
《微信“红包照片”背后的技术难题》
《移动端IM实践:iOS版微信小视频功能技术方案实录》
《移动端IM实践:Android版微信如何大幅提升交互性能(一)》
《移动端IM实践:Android版微信如何大幅提升交互性能(二)》
《移动端IM实践:实现Android版微信的智能心跳机制》
《移动端IM实践:WhatsApp、Line、微信的心跳策略分析》
《移动端IM实践:谷歌消息推送服务(GCM)研究(来自微信)》
《移动端IM实践:iOS版微信的多设备字体适配方案探讨》
《信鸽团队原创:一起走过 iOS10 上消息推送(APNS)的坑》
《腾讯信鸽技术分享:百亿级实时消息推送的实战经验》
《IPv6技术详解:基本概念、应用现状、技术实践(上篇)》
《IPv6技术详解:基本概念、应用现状、技术实践(下篇)》
《腾讯TEG团队原创:基于MySQL的分布式数据库TDSQL十年锻造经验分享》
《微信多媒体团队访谈:音视频开发的学习、微信的音视频技术和挑战等》
《了解iOS消息推送一文就够:史上最全iOS Push技术详解》
《腾讯技术分享:微信小程序音视频技术背后的故事》
《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》
《微信多媒体团队梁俊斌访谈:聊一聊我所了解的音视频技术》
《腾讯音视频实验室:使用AI黑科技实现超低码率的高清实时视频聊天》
《腾讯技术分享:微信小程序音视频与WebRTC互通的技术思路和实践》
《手把手教你读取Android版微信和手Q的聊天记录(仅作技术研究学习)》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》
《腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践》
《微信团队分享:Kotlin渐被认可,Android版微信的技术尝鲜之旅》
《QQ设计团队分享:新版 QQ 8.0 语音消息改版背后的功能设计思路》
《微信团队分享:极致优化,iOS版微信编译速度3倍提升的实践总结》
《IM“扫一扫”功能很好做?看看微信“扫一扫识物”的完整技术实现》
《微信团队分享:微信支付代码重构带来的移动端软件架构上的思考》
《IM开发宝典:史上最全,微信各种功能参数和逻辑规则资料汇总》
《微信团队分享:微信直播聊天室单房间1500万在线的消息架构演进之路》
本文已同步发布于“即时通讯技术圈”公众号。
▲ 本文在公众号上的链接是:点此进入。同步发布链接是:http://www.52im.net/thread-3631-1-1.html