- Cursor
一只爱笑的小燕子
ChatGPThtml5java开发语言
一、什么是Cursor官网:Cursor|BuildFastCursor是一个开源的AI编程编辑器。开源地址https://github.com/pricing目前在国内是可以不需要其他东西,可以直接访问的。而且目「下面是官方的介绍:」Cursor是一个为AI编程而做的编辑器。它还处于早期阶段,但现在Cursor可以帮助你做一些事情。编写:使用Copilot更聪明的人工智能生成10-100行代码比
- 基于深度学习的人脸表情识别系统:YOLOv5 + YOLOv8 + YOLOv10 + UI界面 + 数据集
2025年数学建模美赛
深度学习YOLOui分类人工智能
引言随着人工智能的飞速发展,深度学习技术已广泛应用于各个领域,尤其是在计算机视觉领域。人脸识别和表情识别是其中的一个重要应用,能够在多种场景下提供重要的信息,例如安全监控、情感分析、智能客服、健康监测等。在人脸表情识别任务中,准确识别人脸的情感状态(如高兴、愤怒、悲伤等)是一个极具挑战性的任务。随着YOLO系列算法的不断进步,YOLOv5、YOLOv8和YOLOv10的推出大大提高了目标检测的精度
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 智能裂变引流系统:通过用户验证与分享激励获取目标手机号
威哥说编程
c#
在现代数字营销中,快速增长用户并引导其主动分享,已经成为许多企业提高转化率和扩大市场份额的核心策略。尤其是在一些特定行业,如医疗、金融、电子商务等领域,精准获取用户信息(尤其是手机号)至关重要。这些信息是后续营销、数据分析、精准推送等活动的基础。而通过裂变营销,我们可以利用现有用户的社交网络,快速获取更多高质量的目标用户。本文将介绍如何设计和实现一个智能裂变引流系统,通过用户信息验证、手机号查询、
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 【星闪开发连载】WS63E开发板开箱与程序烧录
神一样的老师
星闪技术物联网windows
前几天一直在外地,今天才有机会拿到开发板。此次星闪体验官活动,每人两款板子,一款是星闪派物联网开发套件,另一款是单独一个核心板。物联网套件的配置和润和的智能家居配置差不多,看上去连底板都是一样的,只有核心板不同。套件和核心板配置正好组成一队星闪通信设备。目前基于星闪的手机还很少见,海思也没有开放手机侧的资料,所以暂时只能做星闪设备之间的测试。给开发板加电之后,发现并没有像家居套件那样有演示程序,所
- agentUniverse X 浙大太乙平台,开源共建招募令来啦,3万奖金等你拿!
人工智能机器学习chatgpt
agentUniverse正式上线浙大太乙开源平台(https://www.taiyi.top),现发起有奖招募令,邀请大家一起参与到开源共建中来,见证AI应用落地的每一步。MaytheOpenSourceforcebewithyou!活动介绍本次活动设置15个任务,包括10个适合初学者的简单型问题(issue)和5个更具挑战性的复杂型问题,参与者可根据个人兴趣和技术水平自由选择认领,完成相应任务
- 恭喜 Apache RocketMQ、Apache Seata 荣获 2024 开源创新榜单“年度开源项目”
云原生rocketmq
近日,以“新纪天工、开物焕彩——致敬开源的力量”为活动主题的“重大科技成就发布会(首场)”在国家科技传播中心成功举办,并隆重揭晓了2024开源创新榜单,旨在致敬中国开源力量,传播推广开源科技成就,营造中国开源创新生态。2024年开源创新榜单由中国科协科学技术传播中心、中国计算机学会、中国通信学会、中国科学院软件研究所共同主办,中国开发者社区承办,以王怀民院士为首组建评审委员会,进行研讨评审,面向中
- 《鸿蒙Next旅游应用:人工智能赋能个性化与智能导览新体验》
人工智能深度学习
随着鸿蒙Next的推出,旅游应用迎来了全新的发展机遇,借助人工智能技术能为用户带来更出色的个性化推荐和智能导览服务。鸿蒙Next与人工智能融合优势鸿蒙Next拥有强大的分布式能力和原生智能体验。其能打破设备界限,实现多设备协同,让用户在手机、平板、智能手表等设备上无缝使用旅游应用。同时,依托华为强大的AI技术和自研的“盘古”大模型,为旅游应用提供了强大的智能支持。个性化推荐实现方式用户数据收集与分
- 《解锁鸿蒙系统AI与第三方应用集成的无限可能》
人工智能深度学习
在当今科技飞速发展的时代,鸿蒙系统与人工智能技术的深度融合为应用开发带来了前所未有的机遇和挑战。如何让鸿蒙系统中的人工智能服务与第三方应用实现更好的集成,成为了开发者们关注的焦点。利用鸿蒙系统内置的人工智能服务鸿蒙系统提供了丰富的人工智能服务,如语音助手、视觉识别、自然语言处理等。开发者可以直接调用这些服务,无需从头开始研发。例如,在开发一款阅读类应用时,可以调用自然语言处理服务实现智能朗读功能,
- 《软硬协同优化,解锁鸿蒙系统AI应用性能新高度》
深度学习人工智能
在当今数字化时代,鸿蒙系统与人工智能的融合正逐渐成为科技领域的热门话题。如何通过软件和硬件协同优化,进一步提升鸿蒙系统中AI应用的整体性能,成为了开发者和技术爱好者们关注的焦点。鸿蒙系统与AI应用的融合现状鸿蒙系统以其独特的微内核架构和分布式特性,为AI应用提供了良好的运行环境。目前,鸿蒙系统中的AI应用已经涵盖了语音助手、图像识别、智能推荐等多个领域,为用户带来了更加智能、便捷的体验。然而,随着
- 《解锁数据新动能:数据标注工具与AI模型训练平台的无缝对接热潮》
人工智能深度学习
在当今人工智能飞速发展的时代,数据已然成为驱动其进步的核心燃料。而数据标注工具与人工智能模型训练平台的集成,实现数据的无缝流转,正逐渐成为行业内的关键热点,犹如为人工智能的发展装上了强劲的双引擎。为何集成如此关键数据标注是为数据赋予标签,使其能被人工智能模型理解和学习的过程。训练平台则是利用这些标注好的数据来构建和优化模型。两者若相互独立运作,数据在不同系统间的传输会面临格式不兼容、接口不匹配等难
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 《数据质量:人工智能模型的成败关键》
人工智能深度学习
在当今人工智能飞速发展的时代,数据质量对人工智能模型的影响至关重要,它直接关系到模型的性能、准确性和可靠性。以下是对这一问题的详细探讨。影响模型的准确性数据准确性的作用:准确的数据是模型准确输出的基础。如果数据中存在错误、偏差或噪声,模型就会学习到这些错误信息,从而导致预测结果不准确。例如在医疗诊断模型中,若患者的症状数据记录错误,模型可能会给出错误的诊断建议。数据完整性的影响:不完整的数据会使模
- 云起无垠荣获第八届“强网杯”高阶技术专项赛优秀奖
网络安全
近日,第八届“强网杯”全国网络安全挑战赛线下赛于郑州高新区的网络安全科技馆赛博厅圆满落幕。云起无垠创始人兼CEO沈凯文博士在活动中发表了题为《安全智能体技术实践与内生安全问题思考》的精彩演讲。沈凯文博士指出,当前数字化时代下网络安全领域面临深刻变革与挑战,AI的快速发展使其成为网络安全创新的核心动力,促使安全智能体出现。但大模型在安全场景落地时存在诸多难题,为此云起无垠构建了AI安全智能体平台。该
- 议题征集 | 2024 广州站 Meetup 即将开启!
云计算
2024年,KubeSphere社区已陆续在北京、上海、深圳、杭州、成都等五座城市成功举办线下Meetup。今年的收官之站,我们将相约广州!广州的小伙伴们,KubeSphere社区盛会即将到来,千万别错过!目前活动议题征集通道已经开启,欢迎各位技术大咖及云原生爱好者踊跃投稿,共同分享技术洞见和实践经验!活动信息时间:2024年12月28日(周六)地点:广东省广州市海珠区鼎新路88号广州阿里中心(风
- 面对 this 指向丢失,尤雨溪在 Vuex 源码中是怎么处理的
写于2021-08-02,同步于segmentfault。1.前言大家好,我是若川,欢迎follow我的github。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(5.7k+人)第一的专栏,写有20余篇源码文章。好久以前我有写过《面试官问系列
- 每次启动项目的服务,电脑竟然乖乖的帮我打开了浏览器,100行源码揭秘!
写于2021-11-04,现在同步到segmentfalut。1.前言大家好,我是若川,欢迎follow我的github。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(5.7k+人)第一的专栏,写有20余篇源码文章。本文仓库open-anal
- 【机器学习】聚类【Ⅰ】基础知识与距离度量
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类聚类1聚类任务在“无
- 第83期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- Taro 源码揭秘:4. 每次 npm run dev:weapp 开发小程序,build 编译打包是如何实现的?
1.前言大家好,我是若川,欢迎关注我的公众号:若川视野。我倾力持续组织了3年多每周大家一起学习200行左右的源码共读活动,感兴趣的可以点此扫码加我微信ruochuan02参与。另外,想学源码,极力推荐关注我写的专栏《学习源码整体架构系列》,目前是掘金关注人数(6k+人)第一的专栏,写有几十篇源码文章。截至目前(2024-08-16),taro4.0正式版已经发布,目前最新是4.0.4,官方4.0正
- AI大模型应用架构(ALLMA)白皮书解读
百度_开发者中心
人工智能大模型数据库自然语言处理
随着人工智能技术的不断发展,AI大模型成为推动生产、生活方式变革,助推产业智能化转型升级,驱动数字经济高质量发展等社会经济发展方面的新引擎。为了全面展示AI大模型的发展全貌,为各界提供新思路,本文将对AI大模型应用架构(ALLMA)白皮书进行解读。一、AI大模型应用架构(ALLMA)的内涵AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模无标注数据预训练、指令微调
- Web APP 阶段性综述
预测模型的开发与应用研究
APPconstructionwebapp
WebAPP阶段性综述当前,WebAPP主要应用于电脑端,常被用于部署数据分析、机器学习及深度学习等高算力需求的任务。在医学与生物信息学领域,WebAPP扮演着重要角色。在生物信息学领域,诸多工具以WebAPP的形式呈现,相较之下,医学领域的此类应用数量相对较少。在医学和生物信息学的学术论文中,WebAPP是展示研究成果的有效工具,并且还能部署到网络上,服务于实际应用场景。ShinyAPP平台特性
- 15款UML建模工具最近更新-2025年1月统计
rolt
建模带来竞争优势EnterpriseArchitectUML产品经理架构师
DDD领域驱动设计批评文集做强化自测题获得“软件方法建模师”称号《软件方法》各章合集工具最新版本:SinelaboreRT6.5更新时间:2025年1月5日工具简介状态机图和活动图代码生成工具。先在EA、VisualParadigm、Cadifra、UModel、MagicDraw、Papyrus、ArgoUML、StarUML、DrawIO等UML建模工具中建立状态机模型,然后导出为XMI文件。
- 在线购物商城系统源码,JSP+servlet+MySQL,idea,eclipse
stxy178
python
在线购物商城系统是一个非常热门的开发项目,通过JSP+servlet+MySQL这一技术组合,可以实现一个功能完善的商城系统。本文将介绍如何使用IDEA和Eclipse来进行开发,并简要介绍数据库设计和系统功能。首先,我们需要创建一个新的Web项目,并选择JSP作为前端技术,servlet作为后端技术,MySQL作为数据库。可以使用IDEA或者Eclipse来进行开发,具体选择哪个IDE根据个人喜
- 推荐文章:libpopcnt——高效位计数的神器
胡蓓怡
推荐文章:libpopcnt——高效位计数的神器libpopcntFastC/C++bitpopulationcountlibrary项目地址:https://gitcode.com/gh_mirrors/li/libpopcnt在数字处理和大数据分析的世界里,每毫秒的性能提升都是宝贵的。今天,我们要向大家隆重介绍一个名为libpopcnt的开源库,它专为快速计算数组中“1”比特的数量而生,是优化
- Python pandas离散化方法优化与应用实例
python慕遥
Python数据分析Pandas数据科学pythonpandas机器学习
大家好,在数据分析中,离散化是将连续数据划分为不同区间的一种重要方法。这种方法可以更好地理解数据分布、简化分析、或在分类建模中对特征进行转换。在Python的Pandas库中,cut和qcut是两个强大的工具,分别用于基于固定区间和基于分位数对数据进行离散化。它们的灵活性和易用性使其在数据处理过程中十分常用。离散化可以将复杂的连续数据转化为更直观的区间,帮助快速发现数据分布规律,并且在机器学习中,
- 什么是数据仓库?
狮歌~资深攻城狮
数据仓库
什么是数据仓库?数据仓库(DataWarehouse,简称DW)是一种面向分析和决策的数据存储系统,它将企业中分散的、异构的数据按照一定的主题和模型进行集成和存储,为数据分析、报表生成以及商业智能(BI)提供支持。数据仓库是大数据体系的重要组成部分,主要用于对大量历史数据的存储、处理和分析。简单来说,数据仓库是一个为数据分析和业务决策服务的系统,通过整合来自不同来源的数据,形成面向主题的、可查询的
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比