- redis搭建一主一从+keepalived(虚拟IP)实现高可用
qq_36984017
redislinuxkeepalived主从高可用
redis搭建一主一从+keepalived(虚拟IP)实现高可用前提有两台机器:如10.50.3.14110.50.3.142,虚拟ip如:10.50.3.170安装redis(两台机器执行):#启用Remi仓库(CentOS7)sudoyuminstall-yhttps://rpms.remirepo.net/enterprise/remi-release-7.rpm#安装Redis6.xsu
- 深入理解 Redis SDS:高效字符串存储的秘密
沉默的煎蛋
bootstrap前端htmlmaven架构开发语言数据库
目录1.引言1.1Redis中字符串的广泛应用2.SDS结构定义2.1Redis3.2之前的SDS结构2.2Redis3.2及之后的SDS结构3.SDS与传统C字符串的比较3.1获取字符串长度3.2缓冲区溢出问题3.3二进制安全性3.4内存分配次数4.SDS的内存分配策略4.1空间预分配4.2惰性空间释放5.SDS的其他特性5.1兼容C字符串函数5.2类型灵活6.SDS的使用场景6.1键值对存储6
- Redis解决缓存击穿问题——两种方法
打死不学Java代码
缓存redis数据库
目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给某一个key设置了过期时间,当key过期的时候,恰好这个时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮解决办法互斥锁(强一致,性能差)根据图片就可以看出,我们的思路就是只能让一个线程能够进行访问Redis,要想实现这个功能,我们也可以使用Redis自带的setnx封装两个方
- Redis 哨兵模式的选举算法是什么?
少林码僧
redissentinel
Redis哨兵模式中的选举算法主要用于在主节点出现故障时,从多个Sentinel节点中选出一个领导者(Leader)来执行故障转移操作。Redis哨兵的选举算法基于Raft算法的简化版本,但不完全等同于标准的Raft算法。以下是其主要过程:一、发现主节点故障当一个Sentinel节点主观地认为主节点不可达时(通常是在一定时间内没有收到主节点的PING回复),它会将主节点标记为主观下线(Subjec
- 从零到一:Redis Cluster部署配置全流程详解,轻松搞定高可用分布式缓存!
IT成长日记
#数据库技术解析与应用实践RedisClusterredis缓存集群
RedisCluster是Redis官方提供的分布式解决方案,它通过数据分片(Sharding)和主从复制(Replication)来实现高可用性和横向扩展。RedisCluster能够在多个节点之间自动分配数据,并且在节点故障时自动进行故障转移,确保系统的高可用性。本文将详细介绍RedisCluster的部署和配置全流程,帮助读者快速搭建一个高可用的Redis集群。1RedisCluster概述
- Kafka 的消息压缩机制:优化存储与传输的利器
阿贾克斯的黎明
javalinqc#java
目录Kafka的消息压缩机制:优化存储与传输的利器一、消息压缩机制的重要意义1.减少存储成本2.提升网络传输效率二、Kafka常用的消息压缩算法1.GZIP压缩2.Snappy压缩3.前端展示压缩状态(Vue3+TS)在消息中间件的大家族中,Kafka以其卓越的性能而备受瞩目。其中,Kafka的消息压缩机制是一项非常重要的特性,它就像是一个高效的“压缩包”,在不损失数据内容的前提下,有效减少数据的
- 基于 Redis 的分布式锁实现与优化
Blossom.118
分布式系统与高性能计算领域redis分布式数据库python3.11算法数据结构推荐算法
在分布式系统中,锁机制是保障数据一致性和并发控制的关键技术之一。Redis作为一种高性能的内存数据库,常被用于实现分布式锁。本文将详细介绍基于Redis的分布式锁的实现原理、代码示例以及优化策略,帮助读者更好地理解和应用这一技术。一、分布式锁的概念与需求在单机系统中,锁的实现相对简单,可以通过操作系统的同步机制或编程语言提供的锁机制来完成。然而,在分布式系统中,多个进程或线程可能运行在不同的机器上
- 在Spring Boot中集成分布式任务调度
微赚淘客机器人开发者联盟@聚娃科技
springboot分布式后端
在SpringBoot中集成分布式任务调度大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!1.引言分布式任务调度是现代企业应用中常见的需求,特别是在微服务架构中,不同服务可能需要定时执行任务、定时触发某些业务逻辑或者周期性地处理数据。SpringBoot提供了多种方式来实现分布式任务调度,包括使用Quartz、Spring自带的任务调度以及集成第三方调度中心等。2.使
- 深入解析 Redis 实现分布式锁的最佳实践
煜bart
机器人redispython
前言在分布式系统中,多个进程或线程可能会同时访问同一个共享资源,这就可能导致数据不一致的问题。为了保证数据的一致性,我们通常需要使用分布式锁。Redis作为高性能的内存数据库,提供了一种简单高效的方式来实现分布式锁。本文将深入探讨如何使用Redis来实现分布式锁,并介绍一些优化技巧和最佳实践。---一、为什么需要分布式锁?在单机环境下,我们可以使用synchronized、Lock等方式来控制并发
- DJANGO 中间件的白名单配置
换个网名有点难
djangopython
在处理白名单内的多个Apps的URL链接时,可以采用以下几种方法来简化白名单的配置:1.使用reverse动态获取URL如果你在urls.py中为每个App的URL定义了名称(name参数),可以使用reverse函数动态获取这些URL,而不是硬编码路径。这样可以避免手动维护大量的路径字符串。Python复制fromdjango.urlsimportreverseclassLoginRequire
- Linux系统中安装各种常用中间件
Vic2334
运维linux中间件运维
Linux安装docker安装docker定制软件源yuminstall-yyum-utilsdevice-mapper-persistent-datalvm2yum-config-manager--add-repohttp://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo安装最新版dockeryumlistdocker-ce--
- 分布式中间件:Redisson 入门和分布式锁
顾北辰20
分布式中间件分布式中间件redisson
分布式中间件:Redisson入门和分布式锁在分布式系统的开发中,处理并发问题是一个常见且具有挑战性的任务。为了确保数据的一致性和完整性,我们常常需要使用分布式锁。Redisson作为一个强大的分布式Java驻内存数据网格(In-MemoryDataGrid)中间件,为我们提供了简单且高效的分布式锁解决方案。本文将带你入门Redisson,并介绍如何使用它实现分布式锁。1.引入Redisson依赖
- 【微服务架构】SpringCloud(二):Eureka原理、服务注册、Euraka单独使用
道友老李
架构师进阶-微服务架构#SpringCloud架构微服务springcloud
文章目录SpringCloudEureka原理RegisterRenewFetchRegistryCancelTimeLagCommunicationmechanism服务注册客户端配置选项服务器端配置选项Eureka单独使用Rest服务调用/eureka/status服务状态注册到eureka的服务信息查看注册到eureka的具体的服务查看服务续约更改服务状态删除状态更新删除服务元数据客户端个人
- 服务器监控 Prometheus、AlertManager、Grafana、钉钉机器人通知
懒熊猫
运维
监控系统简介Prometheus是一套开源的系统监控报警框架。需要指出的是,由于数据采集可能会有丢失,所以Prometheus不适用对采集数据要100%准确的情形。但如果用于记录时间序列数据,Prometheus具有很大的查询优势,此外,Prometheus适用于微服务的体系架构。prometheus可以理解为一个数据库+数据抓取工具,工具从各处抓来统一的数据,放入prometheus这一个时间序
- Java直通车系列46【Spring Cloud】(服务监控与追踪Spring Cloud Sleuth 和 Zipkin)
浪九天
Java直通车javaspring开发语言后端springcloud
目录服务监控与追踪(SpringCloudSleuth和Zipkin)一、为什么需要服务监控与追踪?二、核心工具:SpringCloudSleuth+Zipkin三、场景示例:电商下单调用链追踪场景描述:使用Sleuth+Zipkin的追踪流程:四、高级功能与优化五、适用场景六、总结服务监控与追踪(SpringCloudSleuth和Zipkin)一、为什么需要服务监控与追踪?在微服务架构中,一个
- 分布式限流方案:基于 Redis 的令牌桶算法实现
代码怪兽大作战
后端分布式redis算法java令牌桶接口限流
分布式限流方案:基于Redis的令牌桶算法实现前言一、原理介绍:令牌桶算法二、分布式限流的设计思路三、代码实现四、方案优缺点五、适用场景总结前言在分布式场景下,接口限流变得更加复杂。传统的单机限流方式难以满足跨节点的限流需求,因此需要一种分布式限流方案。这里介绍一种基于Redis和Redisson实现的令牌桶算法分布式限流方案。一、原理介绍:令牌桶算法令牌桶算法是一种用于控制流量的经典算法,其基本
- Microsoft Visual C++ Redistributable 各版本安装包合集
Eric Woo X
C++Windowsmicrosoftc++开发语言
MicrosoftVisualC++Redistributable2019x86:https://aka.ms/vs/16/release/VC_redist.x86.exex64:https://aka.ms/vs/16/release/VC_redist.x64.exeMicrosoftVisualC++Redistributable2017x86:https://go.microsoft.c
- 【大模型系列】SFT(Supervised Fine-Tuning,监督微调)
Kwan的解忧杂货铺@新空间代码工作室
s2AIGC大模型
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:kwan的首页,持续学习,不断总结,共同进步,活到老学到老导航檀越剑指大厂系列:全面总结java核心技术,jvm,并发编程redis,kafka,Spring,微服务等常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,
- 头歌||使用Redis构建任务队列
myy的源代码
redis数据库缓存
第1关:先进先出任务队列编程要求在Begin-End区域编写add_task(task_name)函数,实现将任务加入队列的功能,具体参数与要求如下:方法参数task_name是要加入的任务名称;推入任务的实现:将新的任务从列表task:list的尾部插入。编写pop_task()函数,实现获取一个任务的功能,具体参数与要求如下:获取任务的实现:从列表task:list的头部阻塞式的弹出一个值,最
- istio 介绍-01-一个用于连接、管理和保护微服务的开放平台 概览
后端java
istioistio一个用于连接、管理和保护微服务的开放平台。介绍Istio是一个开放平台,用于提供统一的方式来集成微服务、管理跨微服务的流量、执行策略和聚合遥测数据。Istio的控制平面在底层集群管理平台(例如Kubernetes)上提供了一个抽象层。Istio由以下组件组成:Envoy-每个微服务的Sidecar代理,用于处理集群中服务之间以及从服务到外部服务的入口/出口流量。这些代理形成了一
- oceanbase与mysql性能对比_金融业分布式数据库:TDSQL、HotDB、OceanBase等原理、POC性能对比及选择是......
高中物理宋老师
本帖最后由Amygo于2020-3-1501:33编辑1、分布式的实现,是通过中间件实现分布式,还是源码级别引入分布式算法实现的?解答:(1)分布式数据库是至少由计算节点、存储节点、管理平台、备份还原程序四个部分组成,从数据库系统理论知识上说分成:全局自治和场地自治,也粗略认为:全局可理解为计算节点、场地可理解为存储节点(2)这个问题的标题“中间件实现分布式还是源码级别引入分布式算法”这个说法存在
- 云原生技术的风口来了!!
Real Man★
云原生
云原生技术(Cloud-NativeTechnologies)是一种基于云计算架构设计和运行应用程序的方法,旨在充分利用云计算的弹性、可扩展性和敏捷性。它的核心思想是通过容器化、微服务、DevOps和持续交付等技术,构建高效、可靠且易于维护的应用系统。未来,云原生技术将继续演进,成为企业数字化转型的核心驱动力。云原生技术的核心组件容器化(Containerization):使用容器(如Docker
- Redis Cluster(无中心化设计)详解
π大星星️
redis数据库缓存
1.1RedisCluster工作原理1.1.1背景与动机在传统的Redis单机模式中,哨兵(Sentinel)机制可以解决Redis的高可用问题。当主节点(Master)故障时,哨兵可以自动将从节点(Slave)提升为新的主节点,从而保证Redis服务的可用性。然而,这种机制无法解决单机Redis的写入瓶颈问题。单机Redis的写入性能受限于单机的内存大小、并发数量、网卡速率等因素。为了解决这一
- Redis Sentinel(哨兵模式)高可用性解决方案
π大星星️
redissentinelgit
一、概述RedisSentinel(哨兵模式)是Redis的高可用性(HighAvailability,HA)解决方案,它通过哨兵系统和Redis实例的协同工作,确保了Redis服务的高可用性和数据的持久性。哨兵系统由一个或多个哨兵进程组成,这些进程负责监控主从Redis服务器,并在主服务器出现故障时进行自动故障转移。二、主要功能监控哨兵系统会持续监控所有主从Redis服务器,以及哨兵系统自身的状
- mysql总结
tianyunlinger
大数据mysql数据库
MySQL基础1.数据库基本介绍数据库定义:用于存储数据的仓库,通过SQL语句操作。数据库作用:存储应用程序中的数据,便于管理和查询。数据库分类:关系型数据库(如MySQL、Oracle、DB2)和非关系型数据库(如Redis、HBase)。关系型数据库:通过E-R图描述数据之间的关系,支持复杂查询。2.MySQL在Linux中的安装安装前准备:配置防火墙、创建统一的管理目录(如/export/s
- 后端框架模块化
GIS程序媛—椰子
后端
后端框架的模块化设计旨在简化开发流程、提高可维护性,并通过分层解耦降低复杂性。以下是常见的后端模块及其在不同语言(Node.js、Java、Python)中的实现方式:目录1.路由(Routing)2.中间件(Middleware)3.数据库与ORM(models)4.迁移(Migration)5.服务层(ServiceLayer)6.配置管理(Configuration)7.依赖注入(DI)8.
- 6.Redis 缓存使用问题及解决方案
拾柒mm
缓存redismybatis
引言Redis作为一种高效的缓存解决方案,广泛应用于各类项目中。然而,使用缓存时也会面临一些问题,特别是数据一致性、缓存穿透、击穿、雪崩等问题。1.数据一致性数据一致性是指在使用缓存时,缓存中的数据与数据库中的数据保持一致。数据不一致可能导致用户获取到过时的信息,影响用户体验。1.1数据操作方案在进行数据增删改操作时,常见的方案有:先更新缓存,再更新数据库:优点:缓存命中率提高,用户可以快速获取到
- Redis缓存中间件(非关系型数据库)
小狼人发JO酸奶
缓存redis中间件
最近一段时间整理了关于一些知识的总结,其中就拿出Redis来说说,其他的整理的有些杂还在梳理,相信不久就会和大家见面,期待ne.......,不废话了,开始!Redis作为非关系型数据库,终是要涉及到持久化的,毕竟缓存可没落地,很可能丢失的。Redis持久化主要为:RDB全量持久,AOF增量持久:RDB耗时长非实时记录应配合AOF使用,从而避免停机大量丢失数据。Redis重启时:RDB重构内存+A
- Dify - 架构、部署、扩展与二次开发指南
花千树-010
AIGC架构AIGCpromptembeddingllamagptagi
本文详细解析Dify的架构、部署流程、高可用中间件的独立部署方法,以及二次开发流程,帮助开发者更高效地管理和扩展Dify。1.本地DEMO部署安装Docker,执行下面脚本,可能需要配置镜像。gitclonehttps://github.com/langgenius/dify.gitcddifycddockercp.env.example.envdockercomposeup-d1.Dify部署后
- 亿级分布式系统架构演进实战(一)- 总体概要
power-辰南
java技术架构师成长专栏高并发分布式系统微服务架构设计springcloud
前言不说废话,这次分享是某500强企业真实亿级流量业务中台技术架构演进过程实战。核心目标构建一个兼具高性能、高可用、强一致性的分布式系统,支撑亿级流量场景下的稳定运行。演进路线大纲阶段一:横向扩展(应对万级QPS)核心目标:突破单机性能瓶颈,建立弹性基础[Nginx]/|\[App1][App2][App3]←无状态服务集群\|/[DBProxy]←读写分离中间件/\[Master]←写节点[Sl
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><