- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- 九章数学体系:定义域无界化——AI鲁棒性的“隐形杀手“
九章数学体系
数学建模拓扑学人工智能神经网络
九章数学体系:定义域无界化——AI鲁棒性的"隐形杀手"摘要传统人工智能模型在面对边缘场景时常常表现出鲁棒性不足的问题,本文深入分析发现,这种现象的本质根源在于模型缺乏显式的定义域约束,导致无界化假设成为影响AI鲁棒性的"隐形杀手"。文章系统阐述了无界假设如何引发对抗样本脆弱性和数值不稳定等核心问题,并引入九章数学体系的定义域约束理论,为解决这些问题提供了全新的数学视角和工程实现路径。研究表明,通过
- 国米夏窗豪赌:奥纳纳回归+锋线强援剑指双线复兴
花开半谢
笔记
国际米兰在刚刚结束的世俱杯1/8决赛中0-2完败于弗鲁米嫩塞,冲击冠军梦想戛然而止。这场失利不仅暴露了球队的临场状态问题,更揭示了阵容的关键短板。门将位置成为焦点,高龄的索默本场表现挣扎,赛后评分仅5.9分。球迷虽认为失利非他一人之责,但其状态下滑已是不争事实。夏窗换血势在必行。一个令人瞩目的潜在选项浮出水面——回购旧将奥纳纳。媒体消息显示,曼联正积极追求维拉门神大马丁,有意出售奥纳纳腾出薪资空间
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- Android杂谈(一):悬浮球
人生游戏牛马NPC1号
androidkotlin
目录1.概述1.1什么是悬浮球(FloatingBall)1.1.1悬浮球的定义1.1.2悬浮球的基本概念1.1.3悬浮球的常见作用1.2悬浮球的应用场景与优势1.2.1悬浮球的常见应用场景1.2.2悬浮球带来的便利与优势悬浮球带来的便利与优势1.2.3设计建议1.3Android中悬浮球的实现方式简介2.悬浮球基础实现2.1创建悬浮球布局(XML设计)2.2悬浮球的显示与隐藏控制2.3悬浮球拖拽
- 图14CLIP 模型在 “分布偏移场景” 下的鲁棒性优化策略|学习笔记
学渣67656
笔记人工智能
一、先明确:左图的核心对比维度左图的横轴是“模型在标准分布上的准确率”,纵轴是“模型在分布偏移数据集上的准确率”,本质是对比“不同模型/策略在“标准性能”与“鲁棒性”之间的权衡,图中每条曲线代表一类模型/策略的“标准性能-鲁棒性”趋势,而红色箭头标注的“AdapttoImageNet”是一种“干预策略”,作用于CLIP模型后,使其性能点落在对应曲线上。二、左图中6条曲线的含义(按图例颜色+模型类型
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解Function Calling)如何使用 Function Calling 且保证鲁棒性?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain架构
【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解FunctionCalling)如何使用FunctionCalling且保证鲁棒性?【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解FunctionCalling)如何使用FunctionCalling且保证鲁棒性?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(
- 优格杂志优格杂志社优格编辑部2025年第11期部分目录
QQ296078736
人工智能
优格杂志社优格编辑部2025年第11期部分目录城市养生社区养老模式下老年人心理护理需求乌云高娃1-3走进超声医学的奇妙世界:揭秘超声技术的多样性胡丽丽4-6做有温度的产科护理,筑牢母婴安全防线鲁娜李襄君7精准翻身干预:降低压疮发生率的新方法陈思8月经紊乱与潜在疾病的关联马占兰9师者说让体育课成为生命成长的摇篮杜俊义10读说写教学模式在英语课堂如何人文化实施李刚强11巧借小学数学教学,培育学生数学思
- 微软ASR与开源模型分析
老兵发新帖
microsoft开源
一、微软ASR核心能力1.支持场景场景功能实时语音转文本低延迟流式识别(会议字幕/直播转录)音频文件转文本支持多种格式(WAV/MP3等),批量处理长音频定制化模型针对特定行业术语(医疗/金融)训练专属模型多语言混合识别中英文混合、方言识别(如中文普通话+粤语)说话人分离区分不同发言人(声纹识别)2.关键性能指标识别准确率:中文普通话>95%(安静环境)英文>96%(MicrosoftResear
- 【MPC】模型预测控制笔记 (6):不确定模型的鲁棒MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言不确定模型稳定性分析MATLAB实例1-忽略微小得模型参数误差MATLAB实例2-忽略模型中的非线性项附录1附录2前言致谢【模型预测控制(2022春)lecture4-2RobustMPC】不确定模型假设系统的真实模型为:xk+1=Axk+B(uk+δ1(xk,uk))+δ2(xk)(1)x_{k+1}=Ax_k+B(u_k+\delta_1(x_k,u_k))+\delta_2(x_k)
- c++11标准(5)——并发库(互斥锁)
代码小豪
c++杂谈c++
欢迎来到博主的专栏:c++杂谈博主ID:代码小豪文章目录mutex其他类型的互斥锁具有RAII的管理锁方式其他相关函数在并发的场景下,会存在线程安全的问题,其核心原因在于,线程之间会有调度切换,比如linux中基于优先级,时间片的线程调度,一个线程在运行一个时间片后,会切换到下一个线程。这就会导致一个线程未完成的任务影响到后续线程的运行,特别是那些对于临界资源的修改操作。更多关于操作系统的原理就不
- Mybatis-Plus支持多种数据库
demon7552003
数据库mybatis多数据库
使用Mybatis-Plus进行数据库的访问,但是由于不同的数据库有不同的方言,所以需要进行适配。有2种实现方式:databaseId方式MapperLocation方式指定databaseId方式通过databaseId指定所使用的数据库,选择同步的SQL。Mapper.xml设置默认*Mapper.xml文件的路径在resources/mapper/下默认*Mapper.xml文件的路径在re
- 西南站丨AI驱动仿真未来,2025 Altair区域技术交流会报名开启!
邀请函在AI技术不断演进与应用边界持续拓展的当下,仿真与人工智能、高性能计算的深度融合正在加速推动产品研发模式的智能化变革。从早期设计预测到多物理场优化,从自动化建模到仿真流程智能调度,AI增强仿真正日益成为企业构建核心竞争力的关键引擎。作为“AI驱动,仿真未来”区域巡回系列会议的重要一站,Altair将于6月27日在成都举办西南站“2025Altair区域技术交流会”,汇聚来自制造、汽车、民用航
- VINS-FUSION 优化-在线同步时间td校准
云端舞步
VINS-FUSIONvins-fusion重投影误差视觉误差因子同步时间td校准外参校准雅克比
论文结合源码详细介绍VINS-FUSION优化-在线同步时间td校准。视觉惯性里程计中,不同传感器之间的测量时间同步对于系统的精度和鲁棒性都至关重要。在实际操作时,由于传感器触发和传输过程延迟,在不同传感器测量会出现时间偏移,即时间不同步。所以本文将camera和IMU之间的数据流时间偏移td加入优化系统中,在线实时估计同步时间td。camera和IMU数据流之间的时间偏移td如下图所示:一、同步
- Markdown语法
蓝胖子不会敲代码
小编的学习之路程序人生
Markdown一、Markdown是什么?Markdown是一种轻量级标记语言,创始人为约翰·格鲁伯(JohnGruber)。它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。这种语言吸收了很多在电子邮件中已有的纯文本标记的特性。由于Markdown的轻量化、易读易写特性,并且对于图片,图表、数学式都有支持,许多网站都广泛使用Markdown来撰写帮助文
- 模型集成:提升机器学习模型性能的有效策略及实践
t0_54program
大数据与人工智能机器学习人工智能个人开发
在机器学习领域,模型集成是一种常见且有效的方法,它旨在提高模型的性能和泛化能力。简单来说,模型集成就是通过多种方式将多个模型组合起来,以提升对单个问题的处理表现。模型集成的优势模型集成具备诸多优点,它能够增强机器学习模型在未知数据上的性能、鲁棒性和泛化能力。以基于树的算法为例,它们擅长利用多棵树的集成来提升整体性能,在某些特定任务中表现出色。而对于神经网络模型,虽然在一般情况下,单个模型足以刻画特
- TIP-2025《Data Subdivision Based Dual-Weighted Robust Principal Component Analysis》
Christo3
机器学习人工智能机器学习算法
核心思想分析这篇论文提出了一个新颖的主成分分析(PCA)方法,称为DataSubdivisionBasedDual-WeightedRobustPrincipalComponentAnalysis(DRPCA),旨在解决传统PCA在处理包含噪声和异常值的数据时的鲁棒性问题。其核心思想包括以下几个方面:数据细分与双权重机制:传统PCA假设数据已中心化,并使用平方l2l_2l2-范数,这对噪声和异常值
- 【Lean 4 杂谈】Lean 4依赖类型系统的局限性思考
老猿讲编程
Lean4学习指南lean4形式化
在计算机科学领域,Lean4的依赖类型系统以近乎严苛的严谨性和强大的编译时验证能力备受瞩目,它如同精密的数学仪器,能够在代码运行前就将潜在错误拒之门外。然而,如同硬币的两面,这种极致的类型安全并非没有代价。高度抽象的类型系统与强大的验证能力,在带来可靠性的同时,也衍生出诸多挑战。接下来,我们将深入剖析Lean4依赖类型系统在语法复杂度、编译性能、工程实践、编程范式融合等方面存在的局限性,探究其在追
- 水晶杂谈4:手撕柏林噪声源码,跳转随机领域展望无限
回忆彡美好
水晶杂谈算法噪声柏林噪声我的世界MCFabricJava
文章目录前言柏林噪声取样器PerlinNoiseSampler取值操作顶点哈希梯度向量平滑函数了解Fade函数立方插值图样效果游戏实现参考前言该文章参考1.21.1Java版Yarn映射,详细分析柏林噪声本文存在许多数学公式,可以更好理解文章柏林噪声取样器PerlinNoiseSampler取值操作将排列表取名为permutation,permutation装有256个元素,其范围是从0到255的
- SpringBoot源码解析(二十五):内嵌数据库H2的自动初始化逻辑
好运仔dzl
#SpringBoot源码分析java
一、H2数据库概述1.1H2数据库特性H2是一个开源的嵌入式关系型数据库,具有以下核心特性:嵌入式运行:可作为内存数据库或文件数据库运行零配置部署:无需额外安装和配置兼容模式:支持多种SQL方言和兼容模式Web控制台:提供基于浏览器的管理界面快速启动:极低的内存占用和启动时间1.2SpringBoot集成优势SpringBoot对H2的自动配置提供了以下便利:自动检测:根据classpath自动配
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- Agent轻松通-P3:分析我们的Agent
啾啾大学习
#大模型应用开发LLMAgent后端
欢迎来到啾啾的博客。记录学习点滴。分享工作思考和实用技巧,偶尔也分享一些杂谈。有很多很多不足的地方,欢迎评论交流,感谢您的阅读和评论。目录1引言2使用工具分析Agent:”日志“3Agent分析调优3.1使用LLM自评LLM-as-a-Judge4TODO1引言让我们结合前两篇的理论与实践,尝试系统性、结构化、全面地分析Agent。因继续写下去单个文件太长了,本篇代码较上篇做了结构改动,代码放在h
- C++11标准(4)——并发库(多线程)
代码小豪
c++杂谈c++java开发语言
欢迎来到博主的专栏:c++杂谈博主ID:代码小豪文章目录thread的相关函数thisthreadc++11新增了与并发相关的库,包含线程、以及互斥、同步等与线程安全相关的库,与linux中所使用POSIX库不同,并发库是将其进行了封装,不再是面向过程的使用方式,并且添加了一些c++11的特性,比如右值引用,可变参数模板等。那么这么做有什么好处呢?第一使用并发库可以跨平台,比如在linux环境下,
- 【慧游鲁博】【8】web端·路径重定向·用户选择模式存储/统计·数据格式转换
哇哦哇哦~~
创新实训个人记录前端vuepostgresql数据可视化
文章目录路径重定向修改前1.符合用户访问逻辑2.避免路由冲突3.统一路由控制权修改后模式选择统计核心需求一、数据库设计(NeonPostgreSQL)二、SpringBoot后端实现项目结构依赖配置(`pom.xml`)数据库配置(`application.yml`)实体类(`ModeStats.java`)数据传输DTO(`ModeDto.java`)Mapper接口(`ModeStatsMap
- 【慧游鲁博】【11】小程序端·游览画卷修改·支持图片url格式·结合图床上传和加载·数据对接
哇哦哇哦~~
创新实训个人记录小程序vuespringboot后端
文章目录需求修改细节前端主要修改点说明:前端传递格式后端ArtifactItem类:ScrollServiceImpl类:修改`InfoPanel`结构重构`ScrollHorizontalRollComposer`修改后的`ScrollHorizontalRollComposer`移除冗余代码修改总结数据流图片格式兼容性问题成果展示需求由于图片和文字交流是相互独立的,故仅保留文字交互信息,然后根
- 基于DWT的音频水印算法
gihigo1998
音视频算法网络
基于离散小波变换(DWT)的音频水印算法是一种结合信号处理与信息隐藏的技术,旨在将版权信息或标识隐蔽地嵌入音频信号中,同时保证不可感知性和鲁棒性。以下是该算法的核心步骤及关键技术点:1.算法基本原理DWT的作用:将音频信号分解为不同频率的子带(近似系数和细节系数),利用人耳听觉特性(如对低频敏感、对高频不敏感)选择嵌入位置。水印嵌入策略:通过修改小波系数(如量化、奇偶校验)嵌入水印,确保水印对常规
- 面向智能制造场景的永磁同步电机预测控制系统设计
pk_xz123456
仿真模型MATLAB算法制造matlab算法开发语言分类cnn
面向智能制造场景的永磁同步电机预测控制系统设计摘要:智能制造对驱动系统的动态响应、能效、可靠性和协同控制提出了更高要求。本文深入探讨面向智能制造场景的永磁同步电机(PMSM)预测控制系统设计。通过分析模型预测控制(MPC)的核心原理及其在PMSM控制中的优势,构建了融合数字孪生、分层优化和在线参数辨识的系统架构,并详细设计了代价函数、约束处理、参数鲁棒性提升等关键技术。仿真与半实物实验验证表明,该
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l