- LVS(Linux Virtual Server)概述
afei00123
Linux
目录1.LVS简介2.LVS的组成3.LVS负载均衡的三种包转发方式3.1NAT(网络地址映射)3.2IPTunneling(IP隧道)3.3DirectRouting(直接路由)4.LVS相关术语5.LVS-NAT模式工作原理6.LVS-DR模式工作原理7.LVS的负载调度算法1.LVS简介LVS(LinuxVirtualServer)即Linux虚拟服务器,是由章文嵩博士主导的开源负载均衡项目
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- SpringBoot Jwt令牌的使用(黑马javaweb)
liuaiguo75
SpringBootJAVAIdeaspringboot后端javaspringintellij-idealog4jmybatis
JWT概念JSONWebToken(JWT)是一种开放标准(RFC7519),它定义了一种紧凑和自包含的方式,用于作为JSON对象在各方之间安全地传输信息。这个信息可以被验证和信任,因为它是数字签名的。JWTs可以使用秘密(使用HMAC算法)或使用RSA或ECDSA的公钥/私钥对进行签名。JWT作用1、授权2、信息交换JWT示例代码1、SpringBoot中引入JWTio.jsonwebtoken
- 第六届MathorCup高校数学建模挑战赛-A题:淡水养殖池塘水华发生及池水自净化研究
格图素书
大数据竞赛赛题解析数学建模
目录摘要1问题的重述2问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析2.5问题五的分析3.问题的假设4.符号说明5.模型的建立与求解5.1问题一的建模与求解5.1.1分析对象与指标的选取5.1.2折线图分析5.1.3相关性分析5.1.4问题1的结果分析5.2问题二的建模与求解5.2.1分析对象与指标的选取5.2.2Topsis算法评价5.2.3综合污染指数法5.
- 【GA MTSP】基于matlab遗传算法求解多旅行商问题(目标函数:最短距离 单起点多终点)【含Matlab源码 4354期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(研究室版
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 2024年前端最全Java进阶(五十五)-Java Lambda表达式入门_eclipse lambda(2),程序员面试技巧和注意事项
2401_84435192
程序员前端面试学习
算法冒泡排序选择排序快速排序二叉树查找:最大值、最小值、固定值二叉树遍历二叉树的最大深度给予链表中的任一节点,把它删除掉链表倒叙如何判断一个单链表有环由于篇幅限制小编,pdf文档的详解资料太全面,细节内容实在太多啦,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!如果你觉得对你有帮助,可以戳这里获取:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】"And
- 15.模版模式设计思想
java
15.模版模式设计思想目录介绍01.模版模式基础1.1模版模式由来1.2模版模式定义1.3模版模式场景1.4模版模式思考1.5模版模式特点1.6理解模版唯一性1.7主要解决问题02.模版模式原理2.1罗列一个场景2.2用例子理解模版2.3需求普通实现2.4案例演变实现2.5模版模式实现步骤03.模版模式结构3.1模版标准案例3.2模版模式结构3.3模版模式时序图04.模版模式案例分析4.1角色分析
- 记录一次githubpage+cloudflare+freenom的静态博客部署
一、域名解析准备1.这里假设我在freenom注册了一个apitest.tk2.登录cloudflare,添加网站选择free3.填写名称服务器地址,第一张图的两个地址,填到第三张图并保存。保存完了检查一下哦!!!!原作者地址https://segmentfault.com/u/yourena_c二、githubpages项目准备1.编写html静态页面,一定要是index.html原作者地址ht
- 【Matlab算法】[特殊字符]基于人工势场的多机器人协同运动与避障算法研究(附MATLAB完整代码)
Albert_Lsk
MATLAB算法实现与应用matlab算法机器人人工智能开发语言算法应用避障算法
基于人工势场的多机器人协同运动与避障算法研究摘要1.引言2.方法说明2.1人工势场模型2.2运动控制流程3.核心函数解释3.1主循环结构3.2力计算函数4.实验设计4.1参数配置4.2测试场景5.结果分析5.1典型运动轨迹5.2性能指标6.总结与建议成果总结改进方向附录:完整MATLAB代码参考文献摘要本文提出了一种基于人工势场法的多机器人协同运动与避障算法,通过MATLAB实现仿真验证。算法通过
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- python栈实战 迷宫寻找出口
#岩王爷
深度优先算法
迷宫问题,作为计算机科学和算法设计中的一个经典问题,不仅考验了我们对数据结构的理解和应用,还锻炼了我们解决复杂问题的能力。在众多的解决方案中,利用栈来实现深度优先搜索(DFS)是一种直观且高效的方法。栈,作为一种基础的数据结构,其特性使得它在处理需要回溯的场景时显得尤为合适。在迷宫问题中,当我们沿着某条路径深入探索时,可能会遇到无法继续前行的死胡同。此时,栈的作用就凸显出来了:我们可以将当前的位置
- 自制游戏——斗罗大陆
醉翁之意不在酒.max
C++自制小游戏游戏c++
很简陋,没有图,请见谅//mine[0]=级数//mine[1]=战力//mine[2]=1==白虎//mine[2]=2==昊天锤//mine[2]=3==蓝银草#includeusingnamespacestd;intmine[100],live=3,dou=1,luo=1,da=1,bag[1000],huan=0,liang=30;longlonghuannian[100];voidjia
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- idea新增java快捷键代码片段
LeoGoGoGoo
开发问题汇总intellij-ideajavaide
最近在写一些算法题,有很多的List<List这种编写,想着能否自定义一下快捷键直接在写代码输入:lli,即可看见提示
- Win11截屏怎么截长图?Win11电脑截长图教程
m0_70960708
笔记笔记
Win11截屏怎么截长图?相信有些使用Win11系统的小伙伴们想要电脑截长图时,却不知道从何下手,如果你也有这份困惑的话,那就来看看今天小编特地为你带来的Win11截屏截长图方法教程,简单明了,看了就会哦。方法一:自带的浏览器截图1、首先,找到并打开MicrosoftEdge浏览器。2、接着打开需要截长图的网页,右击右上角...打开,下拉项中,选择网页捕获。
- 滑动窗口算法笔记(C++)
程序员阿荣
算法和数据结构算法笔记c++
滑动窗口算法是一种基于双指针技巧的高效算法,常用于解决数组或字符串上的一些特定问题.算法讲解基本概念滑动窗口算法可以想象成在一个数组或字符串上有一个固定大小或者可变大小的窗口,该窗口在数组或字符串上从左到右滑动.在滑动的过程中,根据具体问题的要求,对窗口内的元素进行计算和操作.窗口的大小可以根据问题的不同而变化,有时是固定的,有时是动态调整的.算法实现步骤初始化:定义两个指针(例如left和rig
- 秒懂倒位序算法
零度随想
一倒位序的实现:倒位序则是把原数的二进制表示倒过来写就成了原数的倒位数。倒位序的二进制实现N=8倒位序----------------顺序0(000)-----------0(000)4(100)-----------1(001)2(010)-----------2(010)6(110)-----------3(011)1(001)-----------4(100)5(101)----------
- 线性回归、逻辑回归及SVM
@迷途小书童
机器学习
1,回归(LinearRegression)回归其实就是对已知公式的未知参数进行估计。可以简单的理解为:在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。当然,实际运算有一些优化算法,肯定不会去枚举的。注意,回归的前提是公式已知,否则回归无法进行。回归中的公式基本都是数据分
- 接口自动化测试实战之Python操作数据库、接口关联及相关管理优化
程序员潇潇
软件测试数据库pythonoracle软件测试自动化测试功能测试程序人生
一、前言本文章主要会讲解接口自动化测试中Python如何操作数据库、为何要操作数据库,有哪些利弊,以及数据库断言、相关的接口关联的测试二、自动化数据库理论与操作2.1接口自动化为何要操作数据库接口自动化中操作数据库主要是根据业务层面决定的,部分情况例如查询手机号、或个人信息时需要操作数据库,有时候也有可能需要删除某个内容,通常而言不会这么做罢了。2.2接口自动化操作数据库的利弊"""利:1、能够根
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- Java基础算法题
Eugene__Chen
算法数据结构
简介实现一些基本的算法,你可以不看,但是不能不会,算法小白可以跟着一起练习。二分查找题目1:查找目标值的第一个出现位置要求:给定一个升序数组nums和目标值target,返回target第一次出现的索引,若不存在返回-1。示例:输入:nums=[1,2,2,2,3],target=2→输出:1输入:nums=[5,7,7,8,8,10],target=6→输出:-1答案:publicintfirs
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- LVS的DR模式
扮瘦人
LVS负载均衡lvs网络
一、DR模式DR模式:直接路由模式1.1DR模式的工作方式调度器在整个LVS集群当中是最重要的。在NAT模式下,调度器负责接受请求,同时根据负载均衡的算法转发流量,响应给客户端。DR模式下,调度器依然负责接受请求,同时根据负载均衡的算法转发流量,区别在于响应直接由RS响应给客户端。直接路由DirectRouting,是一种二层转发模式,二层转发的是数据帧,根据MAC地址和目的MAC地址进行转发。不
- Mermaid 详解与实践
jiuri_1215
流程图
一、Mermaid概述Mermaid是一种基于文本的图表绘制语言,它巧妙地融合在Markdown文档里,让使用者无需复杂的图形编辑软件,仅靠敲代码就能生成专业美观的各类图表。这一特性使得它在技术写作、项目文档、知识分享等领域迅速走红,为可视化表达流程、架构、时间安排等信息提供了高效途径。https://mermaid.nodejs.cn/intro/二、Mermaid基础语法详解(一)流程图(Fl
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin