- 在LLM快速迭代时代构建持久AI应用:架构设计与实施策略
引言:技术浪潮下的开发困境大型语言模型(LLM)的发展速度令人瞠目:从GPT-3到GPT-4,从Claude1到Claude3,从Llama1到Llama3,迭代周期正在从"年"缩短到"月"。作为一名AI应用开发者,我亲身经历了这种技术浪潮带来的挑战:昨天精心调优的prompt今天可能失效;上个季度集成的模型这个季度已有更优选择;刚完成的功能设计瞬间被新模型的能力超越。在如此快速变化的环境中,如何
- EgoAlpha/prompt-in-context-learning项目解析:Prompt Engineering核心技术指南
霍日江Eagle-Eyed
EgoAlpha/prompt-in-context-learning项目解析:PromptEngineering核心技术指南prompt-in-context-learningAwesomeresourcesforin-contextlearningandpromptengineering:MasteryoftheLLMssuchasChatGPT,GPT-3,andFlanT5,withup-
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 「论文导读」LLM高效推理与模型量化
雷羿 LexChien
prompt人工智能LLM论文阅读
1.论文背景作者:HugoTouvron等人,來自MetaAI来源:arXiv:2302.13971,2023年2月主题:介绍LLaMA系列模型(LLaMA-7B、13B、33B、65B),专为研究用途设计,强调高效能与低资源需求的语言模型推理。论文探讨如何通过优化训练数据、模型架构和推理技术,在有限硬体资源(如单一GPU或CPU)上实现高效推理。学术背景:随着大型语言模型(LLM)如GPT-3的
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 基于Google Gemini 探索大语言模型在医学领域应用评估和前景
知来者逆
LLM语言模型搜索引擎人工智能Gemini大语言模型医疗健康医疗
概述近年来,大规模语言模型(LLM)在理解和生成人类语言方面取得了显著的飞跃,这些进步不仅推动了语言学和计算机编程的发展,还为多个领域带来了创新的突破。特别是模型如GPT-3和PaLM,它们通过吸收海量文本数据,已经能够掌握复杂的语言模式。人工智能技术的迅猛发展不断推动着LLM的进化,并加速了这一领域的专业创新。这些进步是随着模型规模的扩大、数据量的增加以及计算能力的提升而逐步实现的,其中许多尖端
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量 ICCL 2022
365JHWZGo
情感对话论文阅读gpt-3共情回复上下文学习提示学习大模型
《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量ICCL2022前言贡献PromptIn-contextlearningSITSMEMOSITSM新的自动指标实验前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《DoesGPT-3GenerateEmpatheticDialogues
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 大模型系列——提示词工程:从原理、实践到未来的一部系统性综述
猫猫姐
大模型人工智能大模型提示词
提示词工程:从原理、实践到未来的一部系统性综述摘要本文系统性地阐述了提示词工程(PromptEngineering)这一关键领域,它作为释放大语言模型(LLM)潜能的核心人机交互范式。报告从LLM的“下一个词预测”基本机制出发,追溯了提示词工程从GPT-3时代“上下文学习”的偶然发现到当前系统化、工程化的演进历程。本文深度剖析了多种高级提示框架,包括旨在激发模型逐步推理的“思维链”(Chain-o
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 【大模型学习 | LORA 原理及实现】
九年义务漏网鲨鱼
语言模型pythonpytorch自然语言处理
LORA:LOW-RANKADAPTATIONOFLARGELAN-GUAGEMODELSGithub库:GitHub-microsoft/LoRA:Codeforloralib,animplementationof“LoRA:Low-RankAdaptationofLargeLanguageModels”GPT-3:175B微调模型变得十分的贵。作者提出利用Low-RankAdaption来冻结
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 二、大模型的能力(DataWhale大模型理论基础)
Y_fulture
大模型理论基础(DW组队学习)人工智能gpt-3nlp
大模型的能力一、概述本节主要是通过对GPT-3论文中的基准测试深入研究,从而获得关于GPT-3更深程度的认识我们应该知道,GPT-3的结果参差不齐:在某些任务上,比如语言建模,GPT-3大幅度超越了现有技术的最高水平;在其他任务上,GPT-3与训练有素,拥有大量标签数据的系统竞争时,却明显落后。造成上述现象的原因:GPT-3并未明确针对这些任务进行训练,它只是作为一个语言模型,被训练来预测下一个词
- 大语言模型:人工智能的“大脑革命“与未来图景
RockLiu@805
大模型实战人工智能语言模型自然语言处理
大语言模型:人工智能的"大脑革命"与未来图景——从GPT-3到AGI的演进之路引言:算力觉醒的时代2022年11月,ChatGPT的横空出世犹如一记惊雷,仅用5天时间就突破百万用户,两个月后月活用户突破1亿。这个现象级应用背后,是参数量高达1750亿的GPT-3.5大模型在支撑。这场由大语言模型(LargeLanguageModels,LLMs)引发的AI革命,正在重塑人类社会的认知边界。当我们与
- DeepSpeed 深度学习学习笔记:高效训练大型模型
主要参考官网文档,对于具体内容还需参考官方文档1.引言:为什么需要DeepSpeed?大型模型训练的挑战随着深度学习模型规模的爆炸式增长(从BERT的几亿参数到GPT-3的千亿参数,再到现在的万亿参数模型),传统的单GPU训练方式变得力不从心,即使是多GPU训练也面临巨大挑战:内存限制(MemoryWall):模型参数:模型的参数量巨大,例如一个1750亿参数的GPT-3模型,即使使用FP16精度
- LoRA、QLoRA是什么
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
人工智能机器学习深度学习
一:LoRA(Low-RankAdaptation,低秩适应)是一种高效的大模型参数微调技术,由Meta在2021年提出。它通过冻结预训练模型参数,仅训练少量新增的低秩矩阵,大幅减少了需要训练的参数量,同时保持接近全参数微调的效果。为什么需要LoRA?传统的全参数微调(Fine-tuning)需要更新大型语言模型的所有参数(如GPT-3有1750亿参数),这带来两个核心问题:计算资源需求极高:需要
- 深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性
m0_57781768
数据结构
深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性在当今的自然语言处理(NLP)领域,大型语言模型(LLM)如GPT-3等,已成为解决复杂问题的重要工具。这些模型能够生成自然语言文本,用于回答问题、生成内容或进行对话。然而,在将这些生成的文本转换为结构化数据格式(如JSON或Pydantic模型实例)时,可能会遇到解析错误。尤其是在文本格式不正确或
- AI 在创新创业比赛的 10 大应用:从创意激发到成果转化
大明者省
人工智能
1.创意灵感生成:基于大数据的创新点挖掘AI通过分析行业动态、市场痛点及前沿技术趋势,结合自然语言处理和生成式模型,为参赛者提供创新灵感。例如,利用GPT-3等语言模型,输入行业关键词,快速生成潜在的创业方向和产品概念。importopenai#设置OpenAIAPI密钥openai.api_key="your_api_key"defgenerate_innovation_ideas(keywor
- 【AI大模型】15、从GPT-1到GPT-3:大语言模型核心技术演进与能力涌现全解析
一、GPT-1:预训练微调范式的奠基者(2018)(一)架构创新:单向Transformer解码器的诞生GPT-1首次将Transformer架构应用于语言模型领域,其核心采用12层Transformer解码器,摒弃了传统RNN的递归结构,通过自注意力机制实现并行计算。与Encoder-Decoder架构不同,GPT-1仅使用解码器部分,每个解码器层包含:多头自注意力模块:8个头,每个头维度64,
- 从零开始掌握OpenAI的GPT-3 API:基础指南与实战示例
stjklkjhgffxw
gpt-3python
#从零开始掌握OpenAI的GPT-3API:基础指南与实战示例##引言在人工智能领域,OpenAI的GPT-3无疑是近年来最令人瞩目的技术突破之一。无论是用于生成自然语言文本、编写代码,还是提供智能对话服务,GPT-3都展示了其强大的能力。本篇文章旨在帮助初学者从零开始掌握GPT-3的API使用,了解其核心原理,并通过实战示例加深理解。##主要内容###1.什么是GPT-3?GPT-3(Gene
- 大模型全景解析:从技术突破到行业变革
敲键盘的小夜猫
大语言模型语言模型
目录一、引言:人工智能的新纪元二、大模型发展历史与技术演进1.早期探索期(2015-2017):从"人工智障"到初具规模RNN/LSTM架构时代(2013-2017)Transformer革命(2017)2.预训练模型崛起(2018-2020):范式转变BERT模型(2018)GPT系列初期(2018-2019)3.千亿参数时代(2020-2022):规模效应凸显GPT-3(2020):规模带来质
- AI大模型创业:如何实现未来盈利?
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型,创业,盈利模式,商业应用,技术趋势,市场分析,案例研究1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是大规模语言模型(LLM)的出现,如GPT-3、LaMDA等,展现出强大的文本生成、理解和翻译能力,为各行各业带来了革命性的变革。随着AI技术的不断进步,越来越多的创业者看到了AI大模型的巨大商业潜力,纷纷涌入这个领域。然而,仅仅拥有先进的AI技术还不够,如何将AI大模型转
- 大语言模型应用指南:效果评估
AI天才研究院
AI大模型企业级应用开发实战AIAgent应用开发大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
大语言模型应用指南:效果评估作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等在自然语言处理领域取得了显著的成果。这些模型能够生成高质量的文本、翻译文本、回答问题等,为各行各业带来了巨大的变革。然而,在实际应用
- Langchain学习笔记(六):Langchain框架介绍与环境搭建
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。1.Langchain的产生背景与解决的问题Langchain是一个为大语言模型(LLM)应用开发而设计的框架,它诞生于2022年底,正是大语言模型迅速发展的时期。其产生背景主要有以下几个方面:1.1大模型应用开发的复杂性随着GPT-3、GPT-4等大
- 还有哪些其他的基于transformer架构模型?
墨染辉
人工智能transformer深度学习人工智能
当然可以!让我们详细介绍一下基于Transformer架构的其他模型。除了您提到的GPT系列(如GPT-3、GPT-4)之外,还有许多其他类型的Transformer模型,每种模型在设计和应用上都有其独特的特点。我们将按架构类型(Decoder-Only、Encoder-Only、Encoder-Decoder)分类介绍这些模型,并简要说明它们的用途和特点。1.Decoder-Only语言模型De
- 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Training a GPT-2 language model
段智华
NLP星空智能对话机器人transformer自然语言处理GPT
自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理TrainingaGPT-2languagemodel目录GPT模型简介TrainingaGPT-2languagemodelStep1:Prerequisites星空智能对话机器人系列博客GPT模型简介生成式预训练转换器(GPT)是由OpenAI团队构建的一系列基于深度学习的语言模型。GPT-3是一个预先训练过的
- LoRA:大模型高效微调的低秩之道——原理解析与技术实现
摘取一颗天上星️
人工智能pythonllama矩阵线性代数
LoRA:大模型高效微调的低秩之道——原理解析与技术实现大型语言模型(LLMs)的全参数微调如同驾驶油轮转弯——资源消耗巨大且响应迟缓。LoRA(Low-RankAdaptation)的提出,让模型微调变得像快艇般灵活高效。本文将深入解析LoRA的核心思想与数学原理。一、问题背景:大模型微调之痛当GPT-3(1750亿参数)需要微调时:显存需求:>1TB(存储优化器状态+梯度)硬件成本:单次实验费
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S