原文:TensorFlow Machine Learning Cookbook
协议:CC BY-NC-SA 4.0
译者:飞龙
本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。
不要担心自己的形象,只关心如何实现目标。——《原则》,生活原则 2.3.c
在本章中,我们将介绍循环神经网络(RNN)以及如何在 TensorFlow 中实现它们。我们将首先演示如何使用 RNN 来预测垃圾邮件。然后,我们将介绍一种用于创建莎士比亚文本的 RNN 变体。我们将通过创建 RNN 序列到序列模型来完成从英语到德语的翻译:
本章的所有代码都可以在 Github 和 Packt 在线仓库。
在迄今为止我们考虑过的所有机器学习算法中,没有人将数据视为序列。为了考虑序列数据,我们扩展了存储先前迭代输出的神经网络。这种类型的神经网络称为 RNN。考虑完全连接的网络秘籍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vudzH71V-1681566911072)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/ab01cacf-e47e-4b82-90eb-09d12f96d06c.png)]
这里,权重由A
乘以输入层x
给出,然后通过激活函数σ
,给出输出层y
。
如果我们有一系列输入数据x[1], x[2], x[3], ...
,我们可以调整完全连接的层以考虑先前的输入,如下所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FXsqi8vC-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/fe9f65c6-64fa-4fcc-854b-c1fae403ead8.png)]
在此循环迭代之上获取下一个输入,我们希望得到概率分布输出,如下所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-005reKSH-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/e5a295eb-90c3-410e-877a-dc830cac4504.png)]
一旦我们有一个完整的序列输出{S[1], S[2], S[3], ...}
,我们可以通过考虑最后的输出将目标视为数字或类别。有关通用架构的工作原理,请参见下图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4nm7zjrS-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/1a80edbf-b1dc-47fc-a328-f4973493e260.png)]
图 1:为了预测单个数字或类别,我们采用一系列输入(标记)并将最终输出视为预测输出
我们还可以将序列输出视为序列到序列模型中的输入:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p2wFlLb1-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/2b10596a-93d9-42b5-acdb-71e661e49650.png)]
图 2:为了预测序列,我们还可以将输出反馈到模型中以生成多个输出
对于任意长序列,使用反向传播算法进行训练会产生长时间相关的梯度。因此,存在消失或爆炸的梯度问题。在本章的后面,我们将通过将 RNN 单元扩展为所谓的长短期记忆(LSTM)单元来探索该问题的解决方案。主要思想是 LSTM 单元引入另一个操作,称为门,它控制通过序列的信息流。我们将在后面的章节中详细介绍。
在处理 NLP 的 RNN 模型时,编码是用于描述将数据(NLP 中的字或字符)转换为数字 RNN 特征的过程的术语。术语解码是将 RNN 数字特征转换为输出字或字符的过程。
首先,我们将应用标准 RNN 单元来预测奇异数值输出,即垃圾邮件概率。
在此秘籍中,我们将在 TensorFlow 中实现标准 RNN,以预测短信是垃圾邮件还是非垃圾邮件。我们将使用 UCI 的 ML 仓库中的 SMS 垃圾邮件收集数据集。我们将用于预测的架构将是来自嵌入文本的输入 RNN 序列,我们将最后的 RNN 输出作为垃圾邮件或非垃圾邮件(1 或 0)的预测。
import os
import re
import io
import requests
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
20
周期以250
的批量大小运行数据。我们将考虑的每个文本的最大长度是25
字;我们将更长的文本剪切为25
或零填充短文本。 RNN 将是10
单元。我们只考虑在词汇表中出现至少 10 次的单词,并且每个单词都将嵌入到可训练的大小50
中。丢弃率将是我们可以在训练期间0.5
或评估期间1.0
设置的占位符:sess = tf.Session()
epochs = 20
batch_size = 250
max_sequence_length = 25
rnn_size = 10
embedding_size = 50
min_word_frequency = 10
learning_rate = 0.0005
dropout_keep_prob = tf.placeholder(tf.float32)
data_dir = 'temp'
data_file = 'text_data.txt'
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if not os.path.isfile(os.path.join(data_dir, data_file)):
zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
r = requests.get(zip_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('SMSSpamCollection')
# Format Data
text_data = file.decode()
text_data = text_data.encode('ascii',errors='ignore')
text_data = text_data.decode().split('\n')
# Save data to text file
with open(os.path.join(data_dir, data_file), 'w') as file_conn:
for text in text_data:
file_conn.write("{}\n".format(text))
else:
# Open data from text file
text_data = []
with open(os.path.join(data_dir, data_file), 'r') as file_conn:
for row in file_conn:
text_data.append(row)
text_data = text_data[:-1]
text_data = [x.split('\t') for x in text_data if len(x)>=1]
[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
def clean_text(text_string):
text_string = re.sub(r'([^sw]|_|[0-9])+', '', text_string)
text_string = " ".join(text_string.split())
text_string = text_string.lower()
return text_string
# Clean texts
text_data_train = [clean_text(x) for x in text_data_train]
请注意,我们的清洁步骤会删除特殊字符作为替代方案,我们也可以用空格替换它们。理想情况下,这取决于数据集的格式。
vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor(max_sequence_length, min_frequency=min_word_frequency)
text_processed = np.array(list(vocab_processor.fit_transform(text_data_train)))
请注意,
contrib.learn.preprocessing
中的函数目前已弃用(使用当前的 TensorFlow 版本,1.10)。目前的替换建议 TensorFlow 预处理包仅在 Python2 中运行。将 TensorFlow 预处理移至 Python3 的工作目前正在进行中,并将取代前两行。请记住,所有当前和最新的代码都可以在这个 GitHub 页面,和 Packt 仓库找到。
text_processed = np.array(text_processed)
text_data_target = np.array([1 if x=='ham' else 0 for x in text_data_target])
shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))
x_shuffled = text_processed[shuffled_ix]
y_shuffled = text_data_target[shuffled_ix]
ix_cutoff = int(len(y_shuffled)*0.80)
x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]
y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]
vocab_size = len(vocab_processor.vocabulary_)
print("Vocabulary Size: {:d}".format(vocab_size))
print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test)))
对于这个秘籍,我们不会进行任何超参数调整。如果读者朝这个方向前进,请记住在继续之前将数据集拆分为训练测试验证集。一个很好的选择是 Scikit-learn 函数
model_selection.train_test_split()
。
x
输入将是一个大小为[None, max_sequence_length]
的占位符,它将是根据文本消息允许的最大字长的批量大小。对于非垃圾邮件或垃圾邮件,y_output
占位符只是一个 0 或 1 的整数:x_data = tf.placeholder(tf.int32, [None, max_sequence_length])
y_output = tf.placeholder(tf.int32, [None])
x
输入数据创建嵌入矩阵和嵌入查找操作:embedding_mat = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0))
embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)
cell = tf.nn.rnn_cell.BasicRNNCell(num_units = rnn_size)
output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)
output = tf.nn.dropout(output, dropout_keep_prob)
注意,动态 RNN 允许可变长度序列。即使我们在这个例子中使用固定的序列长度,通常最好在 TensorFlow 中使用
dynamic_rnn
有两个主要原因。一个原因是,在实践中,动态 RNN 实际上运行速度更快;第二个是,如果我们选择,我们可以通过 RNN 运行不同长度的序列。
output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0]) - 1)
rnn_size
输出转换为两个类别输出:weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))
bias = tf.Variable(tf.constant(0.1, shape=[2]))
logits_out = tf.nn.softmax(tf.matmul(last, weight) + bias)
sparse_softmax
函数时,目标必须是整数索引(类型为int
),并且对率必须是浮点数:losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output)
loss = tf.reduce_mean(losses)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))
optimizer = tf.train.RMSPropOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
train_loss = []
test_loss = []
train_accuracy = []
test_accuracy = []
# Start training
for epoch in range(epochs):
# Shuffle training data
shuffled_ix = np.random.permutation(np.arange(len(x_train)))
x_train = x_train[shuffled_ix]
y_train = y_train[shuffled_ix]
num_batches = int(len(x_train)/batch_size) + 1
for i in range(num_batches):
# Select train data
min_ix = i * batch_size
max_ix = np.min([len(x_train), ((i+1) * batch_size)])
x_train_batch = x_train[min_ix:max_ix]
y_train_batch = y_train[min_ix:max_ix]
# Run train step
train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5}
sess.run(train_step, feed_dict=train_dict)
# Run loss and accuracy for training
temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)
train_loss.append(temp_train_loss)
train_accuracy.append(temp_train_acc)
# Run Eval Step
test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0}
temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)
test_loss.append(temp_test_loss)
test_accuracy.append(temp_test_acc)
print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))
Vocabulary Size: 933
80-20 Train Test split: 4459 -- 1115
Epoch: 1, Test Loss: 0.59, Test Acc: 0.83
Epoch: 2, Test Loss: 0.58, Test Acc: 0.83
...
Epoch: 19, Test Loss: 0.46, Test Acc: 0.86
Epoch: 20, Test Loss: 0.46, Test Acc: 0.86
epoch_seq = np.arange(1, epochs+1)
plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')
plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')
plt.title('Softmax Loss')
plt.xlabel('Epochs')
plt.ylabel('Softmax Loss')
plt.legend(loc='upper left')
plt.show()
# Plot accuracy over time
plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')
plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')
plt.title('Test Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')
plt.show()
在这个秘籍中,我们创建了一个 RNN 到类别的模型来预测 SMS 文本是垃圾邮件还是非垃圾邮件。我们在测试装置上实现了大约 86% 的准确率。以下是测试和训练集的准确率和损失图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KHdJjzJ1-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/84d3659e-1220-4f1a-8848-60a9052938c1.png)]
图 3:训练和测试集的准确率(左)和损失(右)
强烈建议您多次浏览训练数据集以获取顺序数据(这也建议用于非顺序数据)。每次传递数据都称为周期。此外,在每个周期之前对数据进行混洗是非常常见的(并且强烈推荐),以最小化数据顺序对训练的影响。
我们将扩展我们的 RNN 模型,以便通过在此秘籍中引入 LSTM 单元来使用更长的序列。
长短期记忆(LSTM)是传统 RNN 的变体。 LSTM 是一种解决可变长度 RNN 所具有的消失/爆炸梯度问题的方法。为了解决这个问题,LSTM 单元引入了一个内部遗忘门,它可以修改从一个单元到下一个单元的信息流。为了概念化它的工作原理,我们将逐步介绍一个无偏置的 LSTM 方程式。第一步与常规 RNN 相同:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E0xSOZJ8-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/a540a97f-aa33-4b1f-8682-8fcad8f96292.png)]
为了确定我们想要忘记或通过的值,我们将如下评估候选值。这些值通常称为存储单元:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mIjXSeF3-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/d658968e-1b1c-4871-a429-66c863b9c215.png)]
现在我们用一个遗忘矩阵修改候选存储单元,其计算方法如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yLs8vTFC-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/aa794cfb-e140-4c9b-9ea5-a9e1695b5f1d.png)]
我们现在将遗忘存储器与先前的存储器步骤相结合,并将其添加到候选存储器单元以获得新的存储器值:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VrrMeDlq-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/59210e39-f327-4604-a3e1-ebfe782c0818.png)]
现在我们将所有内容组合起来以获取单元格的输出:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NQmbtWSJ-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/bf3b19f0-222e-42f8-8485-9b5c20a37249.png)]
然后,对于下一次迭代,我们更新h
如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OfuHAGPQ-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/c713765a-d0ce-449e-8195-02f5d1282218.png)]
LSTM 的想法是通过基于输入到单元的信息可以忘记或修改的单元具有自我调节的信息流。
在这里使用 TensorFlow 的一个好处是我们不必跟踪这些操作及其相应的反向传播属性。 TensorFlow 将跟踪这些并根据我们的损失函数,优化器和学习率指定的梯度自动更新模型变量。
对于这个秘籍,我们将使用具有 LSTM 单元的序列 RNN 来尝试预测接下来的单词,对莎士比亚的作品进行训练。为了测试我们的工作方式,我们将提供模型候选短语,例如thou art more
,并查看模型是否可以找出短语后面应该包含的单词。
import os
import re
import string
import requests
import numpy as np
import collections
import random
import pickle
import matplotlib.pyplot as plt
import tensorflow as tf
sess = tf.Session()
# Set RNN Parameters
min_word_freq = 5
rnn_size = 128
epochs = 10
batch_size = 100
learning_rate = 0.001
training_seq_len = 50
embedding_size = rnn_size
save_every = 500
eval_every = 50
prime_texts = ['thou art more', 'to be or not to', 'wherefore art thou']
data_dir = 'temp'
data_file = 'shakespeare.txt'
model_path = 'shakespeare_model'
full_model_dir = os.path.join(data_dir, model_path)
# Declare punctuation to remove, everything except hyphens and apostrophe's
punctuation = string.punctuation
punctuation = ''.join([x for x in punctuation if x not in ['-', "'"]])
if not os.path.exists(full_model_dir):
os.makedirs(full_model_dir)
# Make data directory
if not os.path.exists(data_dir):
os.makedirs(data_dir)
print('Loading Shakespeare Data')
# Check if file is downloaded.
if not os.path.isfile(os.path.join(data_dir, data_file)):
print('Not found, downloading Shakespeare texts from www.gutenberg.org')
shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'
# Get Shakespeare text
response = requests.get(shakespeare_url)
shakespeare_file = response.content
# Decode binary into string
s_text = shakespeare_file.decode('utf-8')
# Drop first few descriptive paragraphs.
s_text = s_text[7675:]
# Remove newlines
s_text = s_text.replace('\r\n', '')
s_text = s_text.replace('\n', '')
# Write to file
with open(os.path.join(data_dir, data_file), 'w') as out_conn:
out_conn.write(s_text)
else:
# If file has been saved, load from that file
with open(os.path.join(data_dir, data_file), 'r') as file_conn:
s_text = file_conn.read().replace('\n', '')
s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text)
s_text = re.sub('s+', ' ', s_text ).strip().lower()
def build_vocab(text, min_word_freq):
word_counts = collections.Counter(text.split(' '))
# limit word counts to those more frequent than cutoff
word_counts = {key:val for key, val in word_counts.items() if val>min_word_freq}
# Create vocab --> index mapping
words = word_counts.keys()
vocab_to_ix_dict = {key:(ix+1) for ix, key in enumerate(words)}
# Add unknown key --> 0 index
vocab_to_ix_dict['unknown']=0
# Create index --> vocab mapping
ix_to_vocab_dict = {val:key for key,val in vocab_to_ix_dict.items()}
return ix_to_vocab_dict, vocab_to_ix_dict
ix2vocab, vocab2ix = build_vocab(s_text, min_word_freq)
vocab_size = len(ix2vocab) + 1
请注意,在处理文本时,我们必须小心索引值为零的单词。我们应该保存填充的零值,也可能保存未知单词。
s_text_words = s_text.split(' ')
s_text_ix = []
for ix, x in enumerate(s_text_words):
try:
s_text_ix.append(vocab2ix[x])
except:
s_text_ix.append(0)
s_text_ix = np.array(s_text_ix)
class LSTM_Model():
def __init__(self, rnn_size, batch_size, learning_rate,
training_seq_len, vocab_size, infer =False):
self.rnn_size = rnn_size
self.vocab_size = vocab_size
self.infer = infer
self.learning_rate = learning_rate
if infer:
self.batch_size = 1
self.training_seq_len = 1
else:
self.batch_size = batch_size
self.training_seq_len = training_seq_len
self.lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size)
self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32)
self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
with tf.variable_scope('lstm_vars'):
# Softmax Output Weights
W = tf.get_variable('W', [self.rnn_size, self.vocab_size], tf.float32, tf.random_normal_initializer())
b = tf.get_variable('b', [self.vocab_size], tf.float32, tf.constant_initializer(0.0))
# Define Embedding
embedding_mat = tf.get_variable('embedding_mat', [self.vocab_size, self.rnn_size], tf.float32, tf.random_normal_initializer())
embedding_output = tf.nn.embedding_lookup(embedding_mat, self.x_data)
rnn_inputs = tf.split(embedding_output, num_or_size_splits=self.training_seq_len, axis=1)
rnn_inputs_trimmed = [tf.squeeze(x, [1]) for x in rnn_inputs]
# If we are inferring (generating text), we add a 'loop' function
# Define how to get the i+1 th input from the i th output
def inferred_loop(prev, count):
prev_transformed = tf.matmul(prev, W) + b
prev_symbol = tf.stop_gradient(tf.argmax(prev_transformed, 1))
output = tf.nn.embedding_lookup(embedding_mat, prev_symbol)
return output
decoder = tf.nn.seq2seq.rnn_decoder
outputs, last_state = decoder(rnn_inputs_trimmed,
self.initial_state,
self.lstm_cell,
loop_function=inferred_loop if infer else None)
# Non inferred outputs
output = tf.reshape(tf.concat(1, outputs), [-1, self.rnn_size])
# Logits and output
self.logit_output = tf.matmul(output, W) + b
self.model_output = tf.nn.softmax(self.logit_output)
loss_fun = tf.contrib.legacy_seq2seq.sequence_loss_by_example
loss = loss_fun([self.logit_output],[tf.reshape(self.y_output, [-1])],
[tf.ones([self.batch_size * self.training_seq_len])],
self.vocab_size)
self.cost = tf.reduce_sum(loss) / (self.batch_size * self.training_seq_len)
self.final_state = last_state
gradients, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tf.trainable_variables()), 4.5)
optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = optimizer.apply_gradients(zip(gradients, tf.trainable_variables()))
def sample(self, sess, words=ix2vocab, vocab=vocab2ix, num=10, prime_text='thou art'):
state = sess.run(self.lstm_cell.zero_state(1, tf.float32))
word_list = prime_text.split()
for word in word_list[:-1]:
x = np.zeros((1, 1))
x[0, 0] = vocab[word]
feed_dict = {self.x_data: x, self.initial_state:state}
[state] = sess.run([self.final_state], feed_dict=feed_dict)
out_sentence = prime_text
word = word_list[-1]
for n in range(num):
x = np.zeros((1, 1))
x[0, 0] = vocab[word]
feed_dict = {self.x_data: x, self.initial_state:state}
[model_output, state] = sess.run([self.model_output, self.final_state], feed_dict=feed_dict)
sample = np.argmax(model_output[0])
if sample == 0:
break
word = words[sample]
out_sentence = out_sentence + ' ' + word
return out_sentence
with tf.variable_scope('lstm_model', reuse=tf.AUTO_REUSE) as scope:
# Define LSTM Model
lstm_model = LSTM_Model(rnn_size, batch_size, learning_rate,
training_seq_len, vocab_size)
scope.reuse_variables()
test_lstm_model = LSTM_Model(rnn_size, batch_size, learning_rate,
training_seq_len, vocab_size, infer=True)
saver = tf.train.Saver()
# Create batches for each epoch
num_batches = int(len(s_text_ix)/(batch_size * training_seq_len)) + 1
# Split up text indices into subarrays, of equal size
batches = np.array_split(s_text_ix, num_batches)
# Reshape each split into [batch_size, training_seq_len]
batches = [np.resize(x, [batch_size, training_seq_len]) for x in batches]
# Initialize all variables
init = tf.global_variables_initializer()
sess.run(init)
numpy.roll()
函数):train_loss = []
iteration_count = 1
for epoch in range(epochs):
# Shuffle word indices
random.shuffle(batches)
# Create targets from shuffled batches
targets = [np.roll(x, -1, axis=1) for x in batches]
# Run a through one epoch
print('Starting Epoch #{} of {}.'.format(epoch+1, epochs))
# Reset initial LSTM state every epoch
state = sess.run(lstm_model.initial_state)
for ix, batch in enumerate(batches):
training_dict = {lstm_model.x_data: batch, lstm_model.y_output: targets[ix]}
c, h = lstm_model.initial_state
training_dict[c] = state.c
training_dict[h] = state.h
temp_loss, state, _ = sess.run([lstm_model.cost, lstm_model.final_state, lstm_model.train_op], feed_dict=training_dict)
train_loss.append(temp_loss)
# Print status every 10 gens
if iteration_count % 10 == 0:
summary_nums = (iteration_count, epoch+1, ix+1, num_batches+1, temp_loss)
print('Iteration: {}, Epoch: {}, Batch: {} out of {}, Loss: {:.2f}'.format(*summary_nums))
# Save the model and the vocab
if iteration_count % save_every == 0:
# Save model
model_file_name = os.path.join(full_model_dir, 'model')
saver.save(sess, model_file_name, global_step = iteration_count)
print('Model Saved To: {}'.format(model_file_name))
# Save vocabulary
dictionary_file = os.path.join(full_model_dir, 'vocab.pkl')
with open(dictionary_file, 'wb') as dict_file_conn:
pickle.dump([vocab2ix, ix2vocab], dict_file_conn)
if iteration_count % eval_every == 0:
for sample in prime_texts:
print(test_lstm_model.sample(sess, ix2vocab, vocab2ix, num=10, prime_text=sample))
iteration_count += 1
Loading Shakespeare Data
Cleaning Text
Building Shakespeare Vocab
Vocabulary Length = 8009
Starting Epoch #1 of 10\.
Iteration: 10, Epoch: 1, Batch: 10 out of 182, Loss: 10.37
Iteration: 20, Epoch: 1, Batch: 20 out of 182, Loss: 9.54
...
Iteration: 1790, Epoch: 10, Batch: 161 out of 182, Loss: 5.68
Iteration: 1800, Epoch: 10, Batch: 171 out of 182, Loss: 6.05
thou art more than i am a
to be or not to the man i have
wherefore art thou art of the long
Iteration: 1810, Epoch: 10, Batch: 181 out of 182, Loss: 5.99
plt.plot(train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()
This results in the following plot of our loss values:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EskYj5GW-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/678ff2b5-2732-4bc7-b85f-3fee578fb962.png)]
图 4:模型所有代的序列到序列损失
在这个例子中,我们基于莎士比亚词汇构建了一个带有 LSTM 单元的 RNN 模型来预测下一个单词。可以采取一些措施来改进模型,可能会增加序列大小,具有衰减的学习率,或者训练模型以获得更多的周期。
为了抽样,我们实现了一个贪婪的采样器。贪婪的采样器可能会一遍又一遍地重复相同的短语;例如,他们可能会卡住for the for the
for the....
为了防止这种情况,我们还可以实现一种更随机的采样方式,可能是根据输出的对数或概率分布制作加权采样器。
正如我们可以增加神经网络或 CNN 的深度,我们可以增加 RNN 网络的深度。在这个秘籍中,我们应用了一个三层深度的 LSTM 来改进我们的莎士比亚语言生成。
我们可以通过将它们叠加在一起来增加循环神经网络的深度。从本质上讲,我们将获取目标输出并将其输入另一个网络。
要了解这对于两层的工作原理,请参见下图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0cBAzUNr-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/89cc9e5c-d9d8-403c-8656-6d2a23f69f83.png)]
图 5:在上图中,我们扩展了单层 RNN,使它们具有两层。对于原始的单层版本,请参阅上一章简介中的绘图。左侧架构说明了使用多层 RNN 预测输出序列中的一个输出的方法。正确的架构显示了使用多层 RNN 预测输出序列的方法,该输出序列使用输出作为输入
TensorFlow 允许使用MultiRNNCell()
函数轻松实现多个层,该函数接受 RNN 单元列表。有了这种行为,很容易用MultiRNNCell([rnn_cell(num_units) for n in num_layers])
单元格从 Python 中的一个单元格创建多层 RNN。
对于这个秘籍,我们将执行我们在之前的秘籍中执行的相同的莎士比亚预测。将有两个变化:第一个变化将是具有三个堆叠的 LSTM 模型而不是仅一个层,第二个变化将是进行字符级预测而不是单词。进行字符级预测会将我们潜在的词汇量大大减少到只有 40 个字符(26 个字母,10 个数字,1 个空格和 3 个特殊字符)。
我们将说明本节中的代码与上一节的不同之处,而不是重新使用所有相同的代码。有关完整代码,请参阅 GitHub 仓库或 Packt 仓库。
num_layers = 3
min_word_freq = 5
rnn_size = 128
epochs = 10
list()
命令逐个字符地分隔整个文本:s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text)
s_text = re.sub('s+', ' ', s_text ).strip().lower()
# Split up by characters
char_list = list(s_text)
num_layers
变量并使用 TensorFlow 的MultiRNNCell()
函数创建一个多层 RNN 模型,如下所示:class LSTM_Model():
def __init__(self, rnn_size, num_layers, batch_size, learning_rate,
training_seq_len, vocab_size, infer_sample=False):
self.rnn_size = rnn_size
self.num_layers = num_layers
self.vocab_size = vocab_size
self.infer_sample = infer_sample
self.learning_rate = learning_rate
...
self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)
self.lstm_cell = tf.contrib.rnn.MultiRNNCell([self.lstm_cell for _ in range(self.num_layers)])
self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32)
self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
请注意,TensorFlow 的
MultiRNNCell()
函数接受 RNN 单元列表。在这个项目中,RNN 层都是相同的,但您可以列出您希望堆叠在一起的任何 RNN 层。
Building Shakespeare Vocab by Characters
Vocabulary Length = 40
Starting Epoch #1 of 10
Iteration: 9430, Epoch: 10, Batch: 889 out of 950, Loss: 1.54
Iteration: 9440, Epoch: 10, Batch: 899 out of 950, Loss: 1.46
Iteration: 9450, Epoch: 10, Batch: 909 out of 950, Loss: 1.49
thou art more than the
to be or not to the serva
wherefore art thou dost thou
Iteration: 9460, Epoch: 10, Batch: 919 out of 950, Loss: 1.41
Iteration: 9470, Epoch: 10, Batch: 929 out of 950, Loss: 1.45
Iteration: 9480, Epoch: 10, Batch: 939 out of 950, Loss: 1.59
Iteration: 9490, Epoch: 10, Batch: 949 out of 950, Loss: 1.42
thou art more fancy with to be or not to be for be wherefore art thou art thou
plt.plot(train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uehlZWKg-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/c9aa6cf7-c514-4cbe-bbfb-d815dbbb07b1.png)]
图 6:多层 LSTM 莎士比亚模型的训练损失与世代的关系图
TensorFlow 只需一个 RNN 单元列表即可轻松将 RNN 层扩展到多个层。对于这个秘籍,我们使用与上一个秘籍相同的莎士比亚数据,但是用字符而不是单词处理它。我们通过三层 LSTM 模型来生成莎士比亚文本。我们可以看到,在仅仅 10 个周期之后,我们就能够以文字的形式产生古老的英语。
由于我们使用的每个 RNN 单元也都有输出,我们可以训练 RNN 序列来预测其他可变长度的序列。对于这个秘籍,我们将利用这一事实创建一个英语到德语的翻译模型。
对于这个秘籍,我们将尝试构建一个语言翻译模型,以便从英语翻译成德语。
TensorFlow 具有用于序列到序列训练的内置模型类。我们将说明如何在下载的英语 - 德语句子上训练和使用它。我们将使用的数据来自 www.manythings.org 的编译 zip 文件,该文件汇编了 Tatoeba 项目 的数据。这些数据是制表符分隔的英语 - 德语句子翻译;例如,一行可能包含句子hello. /t hallo
。该数据包含数千种不同长度的句子。
此部分的代码已升级为使用 TensorFlow 官方仓库提供的神经机器翻译模型。
该项目将向您展示如何下载数据,使用,修改和添加到超参数,以及配置您自己的数据以使用项目文件。
虽然官方教程向您展示了如何通过命令行执行此操作,但本教程将向您展示如何使用提供的内部代码从头开始训练您自己的模型。
import os
import re
import sys
import json
import math
import time
import string
import requests
import io
import numpy as np
import collections
import random
import pickle
import string
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from collections import Counter
from tensorflow.python.ops import lookup_ops
from tensorflow.python.framework import ops
ops.reset_default_graph()
local_repository = 'temp/seq2seq'
temp
文件夹:if not os.path.exists(local_repository):
from git import Repo
tf_model_repository = 'https://github.com/tensorflow/nmt/'
Repo.clone_from(tf_model_repository, local_repository)
sys.path.insert(0, 'temp/seq2seq/nmt/')
# May also try to use 'attention model' by importing the attention model:
# from temp.seq2seq.nmt import attention_model as attention_model
from temp.seq2seq.nmt import model as model
from temp.seq2seq.nmt.utils import vocab_utils as vocab_utils
import temp.seq2seq.nmt.model_helper as model_helper
import temp.seq2seq.nmt.utils.iterator_utils as iterator_utils
import temp.seq2seq.nmt.utils.misc_utils as utils
import temp.seq2seq.nmt.train as train
# Model Parameters
vocab_size = 10000
punct = string.punctuation
# Data Parameters
data_dir = 'temp'
data_file = 'eng_ger.txt'
model_path = 'seq2seq_model'
full_model_dir = os.path.join(data_dir, model_path)
json
或xml
文件中)允许我们以编程方式迭代不同类型的架构(在不同的文件中)。对于本演示,我们将使用提供给我们的wmt16.json
并进行一些更改:# Load hyper-parameters for translation model. (Good defaults are provided in Repository).
hparams = tf.contrib.training.HParams()
param_file = 'temp/seq2seq/nmt/standard_hparams/wmt16.json'
# Can also try: (For different architectures)
# 'temp/seq2seq/nmt/standard_hparams/iwslt15.json'
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_4_layer.json',
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_8_layer.json',
with open(param_file, "r") as f:
params_json = json.loads(f.read())
for key, value in params_json.items():
hparams.add_hparam(key, value)
hparams.add_hparam('num_gpus', 0)
hparams.add_hparam('num_encoder_layers', hparams.num_layers)
hparams.add_hparam('num_decoder_layers', hparams.num_layers)
hparams.add_hparam('num_encoder_residual_layers', 0)
hparams.add_hparam('num_decoder_residual_layers', 0)
hparams.add_hparam('init_op', 'uniform')
hparams.add_hparam('random_seed', None)
hparams.add_hparam('num_embeddings_partitions', 0)
hparams.add_hparam('warmup_steps', 0)
hparams.add_hparam('length_penalty_weight', 0)
hparams.add_hparam('sampling_temperature', 0.0)
hparams.add_hparam('num_translations_per_input', 1)
hparams.add_hparam('warmup_scheme', 't2t')
hparams.add_hparam('epoch_step', 0)
hparams.num_train_steps = 5000
# Not use any pretrained embeddings
hparams.add_hparam('src_embed_file', '')
hparams.add_hparam('tgt_embed_file', '')
hparams.add_hparam('num_keep_ckpts', 5)
hparams.add_hparam('avg_ckpts', False)
# Remove attention
hparams.attention = None
# Make Model Directory
if not os.path.exists(full_model_dir):
os.makedirs(full_model_dir)
# Make data directory
if not os.path.exists(data_dir):
os.makedirs(data_dir)
print('Loading English-German Data')
# Check for data, if it doesn't exist, download it and save it
if not os.path.isfile(os.path.join(data_dir, data_file)):
print('Data not found, downloading Eng-Ger sentences from www.manythings.org')
sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
r = requests.get(sentence_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('deu.txt')
# Format Data
eng_ger_data = file.decode('utf-8')
eng_ger_data = eng_ger_data.encode('ascii', errors='ignore')
eng_ger_data = eng_ger_data.decode().split('\n')
# Write to file
with open(os.path.join(data_dir, data_file), 'w') as out_conn:
for sentence in eng_ger_data:
out_conn.write(sentence + '\n')
else:
eng_ger_data = []
with open(os.path.join(data_dir, data_file), 'r') as in_conn:
for row in in_conn:
eng_ger_data.append(row[:-1])
print('Done!')
# Remove punctuation
eng_ger_data = [''.join(char for char in sent if char not in punct) for sent in eng_ger_data]
# Split each sentence by tabs
eng_ger_data = [x.split('\t') for x in eng_ger_data if len(x) >= 1]
[english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
english_sentence = [x.lower().split() for x in english_sentence]
german_sentence = [x.lower().split() for x in german_sentence]
train_prefix.source_suffix = train.en
train_prefix.target_suffix = train.de
后缀将决定语言(en = English
,de = deutsch
),前缀决定数据集的类型(训练或测试):
# We need to write them to separate text files for the text-line-dataset operations.
train_prefix = 'train'
src_suffix = 'en' # English
tgt_suffix = 'de' # Deutsch (German)
source_txt_file = train_prefix + '.' + src_suffix
hparams.add_hparam('src_file', source_txt_file)
target_txt_file = train_prefix + '.' + tgt_suffix
hparams.add_hparam('tgt_file', target_txt_file)
with open(source_txt_file, 'w') as f:
for sent in english_sentence:
f.write(' '.join(sent) + '\n')
with open(target_txt_file, 'w') as f:
for sent in german_sentence:
f.write(' '.join(sent) + '\n')
# Partition some sentences off for testing files
test_prefix = 'test_sent'
hparams.add_hparam('dev_prefix', test_prefix)
hparams.add_hparam('train_prefix', train_prefix)
hparams.add_hparam('test_prefix', test_prefix)
hparams.add_hparam('src', src_suffix)
hparams.add_hparam('tgt', tgt_suffix)
num_sample = 100
total_samples = len(english_sentence)
# Get around 'num_sample's every so often in the src/tgt sentences
ix_sample = [x for x in range(total_samples) if x % (total_samples // num_sample) == 0]
test_src = [' '.join(english_sentence[x]) for x in ix_sample]
test_tgt = [' '.join(german_sentence[x]) for x in ix_sample]
# Write test sentences to file
with open(test_prefix + '.' + src_suffix, 'w') as f:
for eng_test in test_src:
f.write(eng_test + '\n')
with open(test_prefix + '.' + tgt_suffix, 'w') as f:
for ger_test in test_src:
f.write(ger_test + '\n')
print('Processing the vocabularies.')
# Process the English Vocabulary
all_english_words = [word for sentence in english_sentence for word in sentence]
all_english_counts = Counter(all_english_words)
eng_word_keys = [x[0] for x in all_english_counts.most_common(vocab_size-3)] # -3 because UNK, S, /S is also in there
eng_vocab2ix = dict(zip(eng_word_keys, range(1, vocab_size)))
eng_ix2vocab = {val: key for key, val in eng_vocab2ix.items()}
english_processed = []
for sent in english_sentence:
temp_sentence = []
for word in sent:
try:
temp_sentence.append(eng_vocab2ix[word])
except KeyError:
temp_sentence.append(0)
english_processed.append(temp_sentence)
# Process the German Vocabulary
all_german_words = [word for sentence in german_sentence for word in sentence]
all_german_counts = Counter(all_german_words)
ger_word_keys = [x[0] for x in all_german_counts.most_common(vocab_size-3)]
# -3 because UNK, S, /S is also in there
ger_vocab2ix = dict(zip(ger_word_keys, range(1, vocab_size)))
ger_ix2vocab = {val: key for key, val in ger_vocab2ix.items()}
german_processed = []
for sent in german_sentence:
temp_sentence = []
for word in sent:
try:
temp_sentence.append(ger_vocab2ix[word])
except KeyError:
temp_sentence.append(0)
german_processed.append(temp_sentence)
# Save vocab files for data processing
source_vocab_file = 'vocab' + '.' + src_suffix
hparams.add_hparam('src_vocab_file', source_vocab_file)
eng_word_keys = ['' , '', ''] + eng_word_keys
target_vocab_file = 'vocab' + '.' + tgt_suffix
hparams.add_hparam('tgt_vocab_file', target_vocab_file)
ger_word_keys = ['' , '', ''] + ger_word_keys
# Write out all unique english words
with open(source_vocab_file, 'w') as f:
for eng_word in eng_word_keys:
f.write(eng_word + '\n')
# Write out all unique german words
with open(target_vocab_file, 'w') as f:
for ger_word in ger_word_keys:
f.write(ger_word + '\n')
# Add vocab size to hyper parameters
hparams.add_hparam('src_vocab_size', vocab_size)
hparams.add_hparam('tgt_vocab_size', vocab_size)
# Add out-directory
out_dir = 'temp/seq2seq/nmt_out'
hparams.add_hparam('out_dir', out_dir)
if not tf.gfile.Exists(out_dir):
tf.gfile.MakeDirs(out_dir)
namedtuple
。此代码来自 NMT TensorFlow 仓库。有关更多信息,请参阅名为model_helper.py
的仓库中的文件:class TrainGraph(collections.namedtuple("TrainGraph", ("graph", "model", "iterator", "skip_count_placeholder"))):
pass
def create_train_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file, hparams.tgt_vocab_file,share_vocab=False)
src_dataset = tf.data.TextLineDataset(hparams.src_file)
tgt_dataset = tf.data.TextLineDataset(hparams.tgt_file)
skip_count_placeholder = tf.placeholder(shape=(), dtype=tf.int64)
iterator = iterator_utils.get_iterator(src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=None, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len, tgt_max_len=hparams.tgt_max_len, skip_count=skip_count_placeholder)
final_model = model.Model(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, scope=scope)
return TrainGraph(graph=graph, model=final_model, iterator=iterator, skip_count_placeholder=skip_count_placeholder)
train_graph = create_train_graph()
# Create the evaluation graph
class EvalGraph(collections.namedtuple("EvalGraph", ("graph", "model", "src_file_placeholder", "tgt_file_placeholder","iterator"))):
pass
def create_eval_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
hparams.src_vocab_file, hparams.tgt_vocab_file, hparams.share_vocab)
src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
src_dataset = tf.data.TextLineDataset(src_file_placeholder)
tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
iterator = iterator_utils.get_iterator(
src_dataset,
tgt_dataset,
src_vocab_table,
tgt_vocab_table,
hparams.batch_size,
sos=hparams.sos,
eos=hparams.eos,
random_seed=hparams.random_seed,
num_buckets=hparams.num_buckets,
src_max_len=hparams.src_max_len_infer,
tgt_max_len=hparams.tgt_max_len_infer)
final_model = model.Model(hparams,
iterator=iterator,
mode=tf.contrib.learn.ModeKeys.EVAL,
source_vocab_table=src_vocab_table,
target_vocab_table=tgt_vocab_table,
scope=scope)
return EvalGraph(graph=graph,
model=final_model,
src_file_placeholder=src_file_placeholder,
tgt_file_placeholder=tgt_file_placeholder,
iterator=iterator)
eval_graph = create_eval_graph()
# Inference graph
class InferGraph(collections.namedtuple("InferGraph", ("graph","model","src_placeholder", "batch_size_placeholder","iterator"))):
pass
def create_infer_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file,hparams.tgt_vocab_file, hparams.share_vocab)
reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(hparams.tgt_vocab_file, default_value=vocab_utils.UNK)
src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)
src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder)
iterator = iterator_utils.get_infer_iterator(src_dataset,
src_vocab_table,
batch_size=batch_size_placeholder,
eos=hparams.eos,
src_max_len=hparams.src_max_len_infer)
final_model = model.Model(hparams,
iterator=iterator,
mode=tf.contrib.learn.ModeKeys.INFER,
source_vocab_table=src_vocab_table,
target_vocab_table=tgt_vocab_table,
reverse_target_vocab_table=reverse_tgt_vocab_table,
scope=scope)
return InferGraph(graph=graph,
model=final_model,
src_placeholder=src_placeholder,
batch_size_placeholder=batch_size_placeholder,
iterator=iterator)
infer_graph = create_infer_graph()
# Create sample data for evaluation
sample_ix = [25, 125, 240, 450]
sample_src_data = [' '.join(english_sentence[x]) for x in sample_ix]
sample_tgt_data = [' '.join(german_sentence[x]) for x in sample_ix]
print([x for x in zip(sample_src_data, sample_tgt_data)])
config_proto = utils.get_config_proto()
train_sess = tf.Session(config=config_proto, graph=train_graph.graph)
eval_sess = tf.Session(config=config_proto, graph=eval_graph.graph)
infer_sess = tf.Session(config=config_proto, graph=infer_graph.graph)
# Load the training graph
with train_graph.graph.as_default():
loaded_train_model, global_step = model_helper.create_or_load_model(train_graph.model,
hparams.out_dir,
train_sess,
"train")
summary_writer = tf.summary.FileWriter(os.path.join(hparams.out_dir, 'Training'), train_graph.graph)
for metric in hparams.metrics:
hparams.add_hparam("best_" + metric, 0)
best_metric_dir = os.path.join(hparams.out_dir, "best_" + metric)
hparams.add_hparam("best_" + metric + "_dir", best_metric_dir)
tf.gfile.MakeDirs(best_metric_dir)
eval_output = train.run_full_eval(hparams.out_dir, infer_graph, infer_sess, eval_graph, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data)
eval_results, _, acc_blue_scores = eval_output
# Training Initialization
last_stats_step = global_step
last_eval_step = global_step
last_external_eval_step = global_step
steps_per_eval = 10 * hparams.steps_per_stats
steps_per_external_eval = 5 * steps_per_eval
avg_step_time = 0.0
step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
checkpoint_total_count = 0.0
speed, train_ppl = 0.0, 0.0
utils.print_out("# Start step %d, lr %g, %s" %
(global_step, loaded_train_model.learning_rate.eval(session=train_sess),
time.ctime()))
skip_count = hparams.batch_size * hparams.epoch_step
utils.print_out("# Init train iterator, skipping %d elements" % skip_count)
train_sess.run(train_graph.iterator.initializer,
feed_dict={train_graph.skip_count_placeholder: skip_count})
请注意,默认情况下,训练将每 1,000 次迭代保存模型。如果需要,您可以在超参数中更改此设置。目前,训练此模型并保存最新的五个模型占用大约 2 GB 的硬盘空间。
# Run training
while global_step < hparams.num_train_steps:
start_time = time.time()
try:
step_result = loaded_train_model.train(train_sess)
(_, step_loss, step_predict_count, step_summary, global_step, step_word_count,
batch_size, __, ___) = step_result
hparams.epoch_step += 1
except tf.errors.OutOfRangeError:
# Next Epoch
hparams.epoch_step = 0
utils.print_out("# Finished an epoch, step %d. Perform external evaluation" % global_step)
train.run_sample_decode(infer_graph,
infer_sess,
hparams.out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
infer_sess,
hparams.out_dir,
hparams,
summary_writer)
train_sess.run(train_graph.iterator.initializer, feed_dict={train_graph.skip_count_placeholder: 0})
continue
summary_writer.add_summary(step_summary, global_step)
# Statistics
step_time += (time.time() - start_time)
checkpoint_loss += (step_loss * batch_size)
checkpoint_predict_count += step_predict_count
checkpoint_total_count += float(step_word_count)
# print statistics
if global_step - last_stats_step >= hparams.steps_per_stats:
last_stats_step = global_step
avg_step_time = step_time / hparams.steps_per_stats
train_ppl = utils.safe_exp(checkpoint_loss / checkpoint_predict_count)
speed = checkpoint_total_count / (1000 * step_time)
utils.print_out(" global step %d lr %g "
"step-time %.2fs wps %.2fK ppl %.2f %s" %
(global_step,
loaded_train_model.learning_rate.eval(session=train_sess),
avg_step_time, speed, train_ppl, train._get_best_results(hparams)))
if math.isnan(train_ppl):
break
# Reset timer and loss.
step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
checkpoint_total_count = 0.0
if global_step - last_eval_step >= steps_per_eval:
last_eval_step = global_step
utils.print_out("# Save eval, global step %d" % global_step)
utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl)
# Save checkpoint
loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)
# Evaluate on dev/test
train.run_sample_decode(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_ppl, test_ppl = train.run_internal_eval(eval_graph,
eval_sess,
out_dir,
hparams,
summary_writer)
if global_step - last_external_eval_step >= steps_per_external_eval:
last_external_eval_step = global_step
# Save checkpoint
loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)
train.run_sample_decode(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer)
对于这个秘籍,我们使用 TensorFlow 内置的序列到序列模型从英语翻译成德语。
由于我们没有为我们的测试句子提供完美的翻译,因此还有改进的余地。如果我们训练时间更长,并且可能组合一些桶(每个桶中有更多的训练数据),我们可能能够改进我们的翻译。
在 ManyThings 网站上托管了其他类似的双语句子数据集。您可以随意替换任何吸引您的语言数据集。
与许多其他模型相比,RNN 模型的一个重要特性是它们可以处理各种长度的序列。利用这一点,以及它们可以推广到之前未见过的序列这一事实,我们可以创建一种方法来衡量输入的相似序列是如何相互作用的。在这个秘籍中,我们将训练一个 Siamese 相似性 RNN 来测量地址之间的相似性以进行记录匹配。
在本文中,我们将构建一个双向 RNN 模型,该模型将输入到一个完全连接的层,该层输出一个固定长度的数值向量。我们为两个输入地址创建双向 RNN 层,并将输出馈送到完全连接的层,该层输出固定长度的数字向量(长度 100)。然后我们将两个向量输出与余弦距离进行比较,余弦距离在 -1 和 1 之间。我们将输入数据表示为与目标 1 相似,并且目标为 -1。余弦距离的预测只是输出的符号(负值表示不相似,正表示相似)。我们可以使用此网络通过从查询地址获取在余弦距离上得分最高的参考地址来进行记录匹配。
请参阅以下网络架构图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eTvQzct2-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/3ab9a414-bf14-4bef-a6b5-77deef75eea6.png)]
图 8:Siamese RNN 相似性模型架构
这个模型的优点还在于它接受以前没有见过的输入,并且可以将它们与 -1 到 1 的输出进行比较。我们将通过选择模型之前未见过的测试地址在代码中显示它并查看它是否可以匹配到类似的地址。
import os
import random
import string
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
sess = tf.Session()
batch_size = 200
n_batches = 300
max_address_len = 20
margin = 0.25
num_features = 50
dropout_keep_prob = 0.8
def snn(address1, address2, dropout_keep_prob,
vocab_size, num_features, input_length):
# Define the Siamese double RNN with a fully connected layer at the end
def Siamese_nn(input_vector, num_hidden):
cell_unit = tf.nn.rnn_cell.BasicLSTMCell
# Forward direction cell
lstm_forward_cell = cell_unit(num_hidden, forget_bias=1.0)
lstm_forward_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_forward_cell, output_keep_prob=dropout_keep_prob)
# Backward direction cell
lstm_backward_cell = cell_unit(num_hidden, forget_bias=1.0)
lstm_backward_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_backward_cell, output_keep_prob=dropout_keep_prob)
# Split title into a character sequence
input_embed_split = tf.split(1, input_length, input_vector)
input_embed_split = [tf.squeeze(x, squeeze_dims=[1]) for x in input_embed_split]
# Create bidirectional layer
outputs, _, _ = tf.nn.bidirectional_rnn(lstm_forward_cell,
lstm_backward_cell,
input_embed_split,
dtype=tf.float32)
# Average The output over the sequence
temporal_mean = tf.add_n(outputs) / input_length
# Fully connected layer
output_size = 10
A = tf.get_variable(name="A", shape=[2*num_hidden, output_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.1))
b = tf.get_variable(name="b", shape=[output_size], dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.1))
final_output = tf.matmul(temporal_mean, A) + b
final_output = tf.nn.dropout(final_output, dropout_keep_prob)
return(final_output)
with tf.variable_scope("Siamese") as scope:
output1 = Siamese_nn(address1, num_features)
# Declare that we will use the same variables on the second string
scope.reuse_variables()
output2 = Siamese_nn(address2, num_features)
# Unit normalize the outputs
output1 = tf.nn.l2_normalize(output1, 1)
output2 = tf.nn.l2_normalize(output2, 1)
# Return cosine distance
# in this case, the dot product of the norms is the same.
dot_prod = tf.reduce_sum(tf.mul(output1, output2), 1)
return dot_prod
请注意,使用变量范围在两个地址输入的 Siamese 网络的两个部分之间共享参数。另外,请注意,余弦距离是通过归一化向量的点积来实现的。
def get_predictions(scores):
predictions = tf.sign(scores, name="predictions")
return predictions
loss
函数。请记住,我们希望为误差留下边距(类似于 SVM 模型)。我们还将有一个真正的积极和真正的消极的损失期限。使用以下代码进行损失:def loss(scores, y_target, margin):
# Calculate the positive losses
pos_loss_term = 0.25 * tf.square(tf.sub(1., scores))
pos_mult = tf.cast(y_target, tf.float32)
# Make sure positive losses are on similar strings
positive_loss = tf.mul(pos_mult, pos_loss_term)
# Calculate negative losses, then make sure on dissimilar strings
neg_mult = tf.sub(1., tf.cast(y_target, tf.float32))
negative_loss = neg_mult*tf.square(scores)
# Combine similar and dissimilar losses
loss = tf.add(positive_loss, negative_loss)
# Create the margin term. This is when the targets are 0, and the scores are less than m, return 0\.
# Check if target is zero (dissimilar strings)
target_zero = tf.equal(tf.cast(y_target, tf.float32), 0.)
# Check if cosine outputs is smaller than margin
less_than_margin = tf.less(scores, margin)
# Check if both are true
both_logical = tf.logical_and(target_zero, less_than_margin)
both_logical = tf.cast(both_logical, tf.float32)
# If both are true, then multiply by (1-1)=0\.
multiplicative_factor = tf.cast(1\. - both_logical, tf.float32)
total_loss = tf.mul(loss, multiplicative_factor)
# Average loss over batch
avg_loss = tf.reduce_mean(total_loss)
return avg_loss
accuracy
函数如下:def accuracy(scores, y_target):
predictions = get_predictions(scores)
correct_predictions = tf.equal(predictions, y_target)
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
return accuracy
def create_typo(s):
rand_ind = random.choice(range(len(s)))
s_list = list(s)
s_list[rand_ind]=random.choice(string.ascii_lowercase + '0123456789')
s = ''.join(s_list)
return s
street_names
和街道后缀的随机组合。名称和后缀来自以下列表:street_names = ['abbey', 'baker', 'canal', 'donner', 'elm', 'fifth', 'grandvia', 'hollywood', 'interstate', 'jay', 'kings']
street_types = ['rd', 'st', 'ln', 'pass', 'ave', 'hwy', 'cir', 'dr', 'jct']
test_queries = ['111 abbey ln', '271 doner cicle',
'314 king avenue', 'tensorflow is fun']
test_references = ['123 abbey ln', '217 donner cir', '314 kings ave', '404 hollywood st', 'tensorflow is so fun']
请注意,最后一个查询和引用不是模型之前会看到的地址,但我们希望它们将是模型最终看到的最相似的地址。
numpy.roll()
函数)来生成不同的地址:def get_batch(n):
# Generate a list of reference addresses with similar addresses that have
# a typo.
numbers = [random.randint(1, 9999) for i in range(n)]
streets = [random.choice(street_names) for i in range(n)]
street_suffs = [random.choice(street_types) for i in range(n)]
full_streets = [str(w) + ' ' + x + ' ' + y for w,x,y in zip(numbers, streets, street_suffs)]
typo_streets = [create_typo(x) for x in full_streets]
reference = [list(x) for x in zip(full_streets, typo_streets)]
# Shuffle last half of them for training on dissimilar addresses
half_ix = int(n/2)
bottom_half = reference[half_ix:]
true_address = [x[0] for x in bottom_half]
typo_address = [x[1] for x in bottom_half]
typo_address = list(np.roll(typo_address, 1))
bottom_half = [[x,y] for x,y in zip(true_address, typo_address)]
reference[half_ix:] = bottom_half
# Get target similarities (1's for similar, -1's for non-similar)
target = [1]*(n-half_ix) + [-1]*half_ix
reference = [[x,y] for x,y in zip(reference, target)]
return reference
vocab_chars = string.ascii_lowercase + '0123456789 '
vocab2ix_dict = {char:(ix+1) for ix, char in enumerate(vocab_chars)}
vocab_length = len(vocab_chars) + 1
# Define vocab one-hot encoding
def address2onehot(address,
vocab2ix_dict = vocab2ix_dict,
max_address_len = max_address_len):
# translate address string into indices
address_ix = [vocab2ix_dict[x] for x in list(address)]
# Pad or crop to max_address_len
address_ix = (address_ix + [0]*max_address_len)[0:max_address_len]
return address_ix
address1_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address1_ph")
address2_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address2_ph")
y_target_ph = tf.placeholder(tf.int32, [None], name="y_target_ph")
dropout_keep_prob_ph = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Create embedding lookup
identity_mat = tf.diag(tf.ones(shape=[vocab_length]))
address1_embed = tf.nn.embedding_lookup(identity_mat, address1_ph)
address2_embed = tf.nn.embedding_lookup(identity_mat, address2_ph)
model
,batch_accuracy
,batch_loss
和predictions
操作如下:# Define Model
text_snn = model.snn(address1_embed, address2_embed, dropout_keep_prob_ph,
vocab_length, num_features, max_address_len)
# Define Accuracy
batch_accuracy = model.accuracy(text_snn, y_target_ph)
# Define Loss
batch_loss = model.loss(text_snn, y_target_ph, margin)
# Define Predictions
predictions = model.get_predictions(text_snn)
# Declare optimizer
optimizer = tf.train.AdamOptimizer(0.01)
# Apply gradients
train_op = optimizer.minimize(batch_loss)
# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)
train_loss_vec = []
train_acc_vec = []
for b in range(n_batches):
# Get a batch of data
batch_data = get_batch(batch_size)
# Shuffle data
np.random.shuffle(batch_data)
# Parse addresses and targets
input_addresses = [x[0] for x in batch_data]
target_similarity = np.array([x[1] for x in batch_data])
address1 = np.array([address2onehot(x[0]) for x in input_addresses])
address2 = np.array([address2onehot(x[1]) for x in input_addresses])
train_feed_dict = {address1_ph: address1,
address2_ph: address2,
y_target_ph: target_similarity,
dropout_keep_prob_ph: dropout_keep_prob}
_, train_loss, train_acc = sess.run([train_op, batch_loss, batch_accuracy],
feed_dict=train_feed_dict)
# Save train loss and accuracy
train_loss_vec.append(train_loss)
train_acc_vec.append(train_acc)
test_queries_ix = np.array([address2onehot(x) for x in test_queries])
test_references_ix = np.array([address2onehot(x) for x in test_references])
num_refs = test_references_ix.shape[0]
best_fit_refs = []
for query in test_queries_ix:
test_query = np.repeat(np.array([query]), num_refs, axis=0)
test_feed_dict = {address1_ph: test_query,
address2_ph: test_references_ix,
y_target_ph: target_similarity,
dropout_keep_prob_ph: 1.0}
test_out = sess.run(text_snn, feed_dict=test_feed_dict)
best_fit = test_references[np.argmax(test_out)]
best_fit_refs.append(best_fit)
print('Query Addresses: {}'.format(test_queries))
print('Model Found Matches: {}'.format(best_fit_refs))
Query Addresses: ['111 abbey ln', '271 doner cicle', '314 king avenue', 'tensorflow is fun']
Model Found Matches: ['123 abbey ln', '217 donner cir', '314 kings ave', 'tensorflow is so fun']
我们可以从测试查询和参考中看到模型不仅能够识别正确的参考地址,而且还能够推广到非地址短语。我们还可以通过查看训练期间的损失和准确率来了解模型的执行情况:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c1Gkv86z-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/83345bbb-8fc4-4d17-b90d-b8c2ebb16c2a.png)]
图 9:训练期间 Siamese RNN 相似性模型的准确率和损失
请注意,我们没有为此练习指定测试集。这是因为我们如何生成数据。我们创建了一个批量函数,每次调用它时都会创建新的批量数据,因此模型始终可以看到新数据。因此,我们可以使用批量损失和精度作为测试损失和准确率的替代项。但是,对于一组有限的实际数据,情况永远不会如此,因为我们总是需要训练和测试集来判断模型的表现。
在本章中,我们将介绍以下主题:
到目前为止,我们已经介绍了如何在 TensorFlow 中训练和评估各种模型。因此,在本章中,我们将向您展示如何编写可供生产使用的代码。生产就绪代码有各种定义,但对我们来说,生产代码将被定义为具有单元测试的代码,分离训练和评估代码,并有效地保存,并加载数据管道和图会话的各种所需部分。
本章提供的 Python 脚本应该从命令行运行。这允许运行测试,并将设备位置记录到屏幕上。
测试代码可以加快原型设计速度,提高调试效率,加快更改速度,并且可以更轻松地共享代码。在 TensorFlow 中有许多简单的方法可以实现单元测试,我们将在本文中介绍它们。
在编写 TensorFlow 模型时,有助于进行单元测试以检查程序的功能。这有助于我们,因为当我们想要对程序单元进行更改时,测试将确保这些更改不会以未知方式破坏模型。在这个秘籍中,我们将创建一个依赖于MNIST
数据的简单 CNN 网络。有了它,我们将实现三种不同类型的单元测试来说明如何在 TensorFlow 中编写它们。
请注意,Python 有一个很棒的测试库,名为 Nose。 TensorFlow 还具有内置测试功能,我们将在其中查看,这样可以更轻松地测试 Tensor 对象的值,而无需评估会话中的值。
import sys
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Start a graph session
sess = tf.Session()
# Load data
data_dir = 'temp'
mnist = tf.keras.datasets.mnist
(train_xdata, train_labels), (test_xdata, test_labels) = mnist.load_data()
train_xdata = train_xdata / 255.0
test_xdata = test_xdata / 255.0
# Set model parameters
batch_size = 100
learning_rate = 0.005
evaluation_size = 100
image_width = train_xdata[0].shape[0]
image_height = train_xdata[0].shape[1]
target_size = max(train_labels) + 1
num_channels = 1 # greyscale = 1 channel
generations = 100
eval_every = 5
conv1_features = 25
conv2_features = 50
max_pool_size1 = 2 # NxN window for 1st max pool layer
max_pool_size2 = 2 # NxN window for 2nd max pool layer
fully_connected_size1 = 100
dropout_prob = 0.75
# Declare model placeholders
x_input_shape = (batch_size, image_width, image_height, num_channels)
x_input = tf.placeholder(tf.float32, shape=x_input_shape)
y_target = tf.placeholder(tf.int32, shape=(batch_size))
eval_input_shape = (evaluation_size, image_width, image_height, num_channels)
eval_input = tf.placeholder(tf.float32, shape=eval_input_shape)
eval_target = tf.placeholder(tf.int32, shape=(evaluation_size))
dropout = tf.placeholder(tf.float32, shape=())
# Declare model parameters
conv1_weight = tf.Variable(tf.truncated_normal([4, 4, num_channels, conv1_features],
stddev=0.1, dtype=tf.float32))
conv1_bias = tf.Variable(tf.zeros([conv1_features], dtype=tf.float32))
conv2_weight = tf.Variable(tf.truncated_normal([4, 4, conv1_features, conv2_features],
stddev=0.1, dtype=tf.float32))
conv2_bias = tf.Variable(tf.zeros([conv2_features], dtype=tf.float32))
# fully connected variables
resulting_width = image_width // (max_pool_size1 * max_pool_size2)
resulting_height = image_height // (max_pool_size1 * max_pool_size2)
full1_input_size = resulting_width * resulting_height * conv2_features
full1_weight = tf.Variable(tf.truncated_normal([full1_input_size, fully_connected_size1],
stddev=0.1, dtype=tf.float32))
full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size1], stddev=0.1, dtype=tf.float32))
full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size1, target_size],
stddev=0.1, dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size], stddev=0.1, dtype=tf.float32))
# Initialize Model Operations
def my_conv_net(input_data):
# First Conv-ReLU-MaxPool Layer
conv1 = tf.nn.conv2d(input_data, conv1_weight, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
max_pool1 = tf.nn.max_pool(relu1, ksize=[1, max_pool_size1, max_pool_size1, 1],
strides=[1, max_pool_size1, max_pool_size1, 1], padding='SAME')
# Second Conv-ReLU-MaxPool Layer
conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size2, max_pool_size2, 1],
strides=[1, max_pool_size2, max_pool_size2, 1], padding='SAME')
# Transform Output into a 1xN layer for next fully connected layer
final_conv_shape = max_pool2.get_shape().as_list()
final_shape = final_conv_shape[1] * final_conv_shape[2] * final_conv_shape[3]
flat_output = tf.reshape(max_pool2, [final_conv_shape[0], final_shape])
# First Fully Connected Layer
fully_connected1 = tf.nn.relu(tf.add(tf.matmul(flat_output, full1_weight), full1_bias))
# Second Fully Connected Layer
final_model_output = tf.add(tf.matmul(fully_connected1, full2_weight), full2_bias)
# Add dropout
final_model_output = tf.nn.dropout(final_model_output, dropout)
return final_model_output
model_output = my_conv_net(x_input)
test_model_output = my_conv_net(eval_input)
# Declare Loss Function (softmax cross entropy)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(model_output, y_target))
# Create a prediction function
prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)
# Create accuracy function
def get_accuracy(logits, targets):
batch_predictions = np.argmax(logits, axis=1)
num_correct = np.sum(np.equal(batch_predictions, targets))
return 100\. * num_correct/batch_predictions.shape[0]
# Create an optimizer
my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
train_step = my_optimizer.minimize(loss)
# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)
tf.test.TestCase
并创建一种方法来测试占位符(或变量)的值。对于此测试用例,我们确保损失概率(用于保持)大于0.25
,因此模型不会更改为尝试训练超过 75% 的损失,如下所示:# Check values of tensors!
class DropOutTest(tf.test.TestCase):
# Make sure that we don't drop too much
def dropout_greaterthan(self):
with self.test_session():
self.assertGreater(dropout.eval(), 0.25)
accuracy
函数是否按预期运行。为此,我们创建一个概率样本数组和我们期望的样本,然后确保测试精度返回 100% ,如下所示:# Test accuracy function
class AccuracyTest(tf.test.TestCase):
# Make sure accuracy function behaves correctly
def accuracy_exact_test(self):
with self.test_session():
test_preds = [[0.9, 0.1],[0.01, 0.99]]
test_targets = [0, 1]
test_acc = get_accuracy(test_preds, test_targets)
self.assertEqual(test_acc.eval(), 100.)
Tensor
对象是我们期望的形状。要通过target_size
测试模型输出是batch_size
的预期形状,请输入以下代码:# Test tensorshape
class ShapeTest(tf.test.TestCase):
# Make sure our model output is size [batch_size, num_classes]
def output_shape_test(self):
with self.test_session():
numpy_array = np.ones([batch_size, target_size])
self.assertShapeEqual(numpy_array, model_output)
main()
函数告诉 TensorFlow 我们正在运行哪个应用。脚本如下:def main(argv):
# Start training loop
train_loss = []
train_acc = []
test_acc = []
for i in range(generations):
rand_index = np.random.choice(len(train_xdata), size=batch_size)
rand_x = train_xdata[rand_index]
rand_x = np.expand_dims(rand_x, 3)
rand_y = train_labels[rand_index]
train_dict = {x_input: rand_x, y_target: rand_y, dropout: dropout_prob}
sess.run(train_step, feed_dict=train_dict)
temp_train_loss, temp_train_preds = sess.run([loss, prediction], feed_dict=train_dict)
temp_train_acc = get_accuracy(temp_train_preds, rand_y)
if (i + 1) % eval_every == 0:
eval_index = np.random.choice(len(test_xdata), size=evaluation_size)
eval_x = test_xdata[eval_index]
eval_x = np.expand_dims(eval_x, 3)
eval_y = test_labels[eval_index]
test_dict = {eval_input: eval_x, eval_target: eval_y, dropout: 1.0}
test_preds = sess.run(test_prediction, feed_dict=test_dict)
temp_test_acc = get_accuracy(test_preds, eval_y)
# Record and print results
train_loss.append(temp_train_loss)
train_acc.append(temp_train_acc)
test_acc.append(temp_test_acc)
acc_and_loss = [(i + 1), temp_train_loss, temp_train_acc, temp_test_acc]
acc_and_loss = [np.round(x, 2) for x in acc_and_loss]
print('Generation # {}. Train Loss: {:.2f}. Train Acc (Test Acc): {:.2f}
({:.2f})'.format(*acc_and_loss))
test
,它将执行测试;否则,它将运行训练:if __name__ == '__main__':
cmd_args = sys.argv
if len(cmd_args) > 1 and cmd_args[1] == 'test':
# Perform unit-tests
tf.test.main(argv=cmd_args[1:])
else:
# Run the TensorFlow app
tf.app.run(main=None, argv=cmd_args)
$ python3 implementing_unit_tests.py test
...
----------------------------------------------------------------------
Ran 3 tests in 0.001s
OK
前面步骤中描述的完整程序可以在书籍的 GitHub 仓库和 Packt 仓库中找到。
在本节中,我们实现了三种类型的单元测试:张量值,操作输出和张量形状。 TensorFlow 有更多类型的单元测试函数,可在此处找到 。
请记住,单元测试有助于确保代码能够按预期运行,为共享代码提供信心,并使再现性更易于访问。
您将意识到 TensorFlow 有许多功能,包括计算图,它们可以自然地并行计算。计算图可以分为不同的处理器以及处理不同的批量。我们将讨论如何在此秘籍中访问同一台机器上的不同处理器。
对于此秘籍,我们将向您展示如何在同一系统上访问多个设备并对其进行训练。这是一种非常常见的情况:与 CPU 一起,机器可能具有一个或多个可以共享计算负载的 GPU。如果 TensorFlow 可以访问这些设备,它将通过贪婪的过程自动将计算分配给多个设备。但是,TensorFlow 还允许程序通过名称范围放置指定哪些设备将在哪个设备上。
要访问 GPU 设备,必须安装 GPU 版本的 TensorFlow。要安装 TensorFlow 的 GPU 版本,请访问此链接。下载,设置并按照特定系统的说明进行操作。请注意,TensorFlow 的 GPU 版本需要 CUDA 才能使用 GPU。
在本文中,我们将向您展示各种命令,允许您访问系统上的各种设备;我们还将演示如何找出 TensorFlow 正在使用的设备。
config
,将log_device_placement
设置为True
。当我们从命令行运行脚本时,我们将看到特定的设备放置,如以下输出所示:import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Runs the op.
print(sess.run(c))
$python3 using_multiple_devices.py
Device mapping: no known devices.
I tensorflow/core/common_runtime/direct_session.cc:175] Device mapping:
MatMul: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] MatMul: /job:localhost/replica:0/task:0/cpu:0
b: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] a: /job:localhost/replica:0/task:0/cpu:0
[[ 22\. 28.]
[ 49\. 64.]]
config = tf.ConfigProto()
config.allow_soft_placement = True
sess_soft = tf.Session(config=config)
config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)
config
设置per_process_gpu_memory_fraction
,如下所示:config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
if tf.test.is_built_with_cuda():
<Run GPU specific code here>
with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])
with tf.device('/gpu:0'):
c = tf.matmul(a,b)
c = tf.reshape(c, [-1])
with tf.device('/gpu:1'):
d = tf.matmul(b,a)
flat_d = tf.reshape(d, [-1])
combined = tf.multiply(c, flat_d)
print(sess.run(combined))
当我们想在我们的机器上为 TensorFlow 操作指定特定设备时,我们需要知道 TensorFlow 如何引用这些设备。 TensorFlow 中的设备名称遵循以下约定:
| 设备 | 设备名称 |
| — | — | — |
| 主 CPU | /CPU:0
|
| 第二个 CPU | /CPU:1
|
| 主 GPU | /GPU:0
|
| 第二个 GPU | /GPU:1
|
| 第三个 GPU | /GPU:2
|
幸运的是,在云中运行 TensorFlow 现在比以往更容易。许多云计算服务提供商都提供 GPU 实例,其中包含主 CPU 和强大的 GPU。 Amazon Web Services(AWS)具有 G 实例和 P2 实例,允许使用功能强大的 GPU,为 TensorFlow 流程提供极快的速度。您甚至可以免费选择 AWS Machine Images(AMI),它将在安装了 TensorFlow 的 GPU 实例的情况下启动选定的实例。
为了扩展 TensorFlow 并行化的范围,我们还可以以分布式方式在完全不同的机器上从我们的图执行单独的操作。这个秘籍将告诉你如何。
在 TensorFlow 发布几个月后,谷歌发布了分布式 TensorFlow,它是对 TensorFlow 生态系统的一次重大升级,并且允许在不同的工作机器上设置 TensorFlow 集群,并分享训练和评估的计算任务楷模。使用分布式 TensorFlow 就像为工作器设置参数一样简单,然后为不同的工作器分配不同的工作。
在这个秘籍中,我们将建立两个本地工作器并将他们分配到不同的工作。
2222
和2223
)定义我们的两个本地 worker,如下所示:import tensorflow as tf
# Cluster for 2 local workers (tasks 0 and 1):
cluster = tf.train.ClusterSpec({'local': ['localhost:2222', 'localhost:2223']})
server = tf.train.Server(cluster, job_name="local", task_index=0)
server = tf.train.Server(cluster, job_name="local", task_index=1)
mat_dim = 25
matrix_list = {}
with tf.device('/job:local/task:0'):
for i in range(0, 2):
m_label = 'm_{}'.format(i)
matrix_list[m_label] = tf.random_normal([mat_dim, mat_dim])
# Have each worker calculate the sums
sum_outs = {}
with tf.device('/job:local/task:1'):
for i in range(0, 2):
A = matrix_list['m_{}'.format(i)]
sum_outs['m_{}'.format(i)] = tf.reduce_sum(A)
# Sum all the sums
summed_out = tf.add_n(list(sum_outs.values()))
with tf.Session(server.target) as sess:
result = sess.run(summed_out)
print('Summed Values:{}'.format(result))
$ python3 parallelizing_tensorflow.py
I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] Initialize GrpcChannelCache for job local -> {0 -> localhost:2222, 1 -> localhost:2223}
I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:206] Started server with target: grpc://localhost:2222
I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] Initialize GrpcChannelCache for job local -> {0 -> localhost:2222, 1 -> localhost:2223}
I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:206] Started server with target: grpc://localhost:2223
I tensorflow/core/distributed_runtime/master_session.cc:928] Start master session 252bb6f530553002 with config:
Summed Values:-21.12611198425293
使用分布式 TensorFlow 非常简单。您所要做的就是将工作器 IP 分配给具有名称的服务器。然后,可以手动或自动为工作器分配操作。
如果我们想在生产环境中使用我们的机器学习脚本,我们首先需要考虑一些要点作为最佳实践。在本节中,我们将概述其中的一些内容。
在本文中,我们想总结并浓缩将 TensorFlow 投入生产的各种技巧。我们将介绍如何最好地保存和加载词汇表,图,变量和模型检查点。我们还将讨论如何使用 TensorFlow 的命令行参数解析器并更改 TensorFlow 的日志记录详细程度。
from tensorflow.python.framework import ops
ops.reset_default_graph()
JSON
库保存词汇表字典的示例:import json word_list = ['to', 'be', 'or', 'not', 'to', 'be']
vocab_list = list(set(word_list))
vocab2ix_dict = dict(zip(vocab_list, range(len(vocab_list))))
ix2vocab_dict = {val:key for key,val in vocab2ix_dict.items()}
# Save vocabulary
import json
with open('vocab2ix_dict.json', 'w') as file_conn:
json.dump(vocab2ix_dict, file_conn)
# Load vocabulary
with open('vocab2ix_dict.json', 'r') as file_conn:
vocab2ix_dict = json.load(file_conn)
在这里,我们以
JSON
格式保存了词汇词典,但我们也可以将其保存在text
文件,csv
甚至二进制格式中。如果词汇量很大,则首选二进制文件。您还可以考虑使用 Pickle 库来创建pkl
二进制文件,但请注意,Pickle 文件在库和 Python 版本之间不能很好地转换。
Saver()
操作并将其添加到图中。建议我们在训练期间定期保存模型。要保存模型,请输入以下代码:After model declaration, add a saving operations
saver = tf.train.Saver()
# Then during training, save every so often, referencing the training generation
for i in range(generations):
...
if i%save_every == 0:
saver.save(sess, 'my_model', global_step=step)
# Can also save only specific variables:
saver = tf.train.Saver({"my_var": my_variable})
请注意,
Saver()
操作也会采用其他参数。如前面的示例所示,它可以使用变量和张量字典来保存特定元素。每隔n
小时也可以检查一次,定期执行保存操作。默认情况下,保存操作仅保留最后五个模型保存(出于空间考虑)。可以使用maximum_to_keep
选项更改此设置。
name
参数,如下例所示:conv_weights = tf.Variable(tf.random_normal(), name='conv_weights')
loss = tf.reduce_mean(... , name='loss')
tf.apps.flags
库在命令行上轻松执行参数解析。使用这些函数,我们可以定义字符串,浮点数,整数或布尔值的命令行参数,如下面的代码片段所示。使用这些标志定义,我们可以运行tf.app.run()
,它将使用以下标志参数运行main()
函数:tf.flags.DEFINE_string("worker_locations", "", "List of worker addresses.")
tf.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
tf.flags.DEFINE_integer('generations', 1000, 'Number of training generations.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')
FLAGS = tf.flags.FLAGS
# Need to define a 'main' function for the app to run
def main(_):
worker_ips = FLAGS.worker_locations.split(",")
learning_rate = FLAGS.learning_rate
generations = FLAGS.generations
run_unit_tests = FLAGS.run_unit_tests
# Run the Tensorflow app
if __name__ == "__main__":
# The following is looking for a "main()" function to run and will pass.
tf.app.run()
# Can modify this to be more custom:
tf.app.run(main=my_main_function(), argv=my_arguments)
DEBUG
,INFO
,WARN
,ERROR
和FATAL
。默认为WARN
,如下所示:tf.logging.set_verbosity(tf.logging.WARN)
# WARN is the default value, but to see more information, you can set it to
# INFO or DEBUG
tf.logging.set_verbosity(tf.logging.DEBUG)
在本节中,我们提供了在 TensorFlow 中创建生产级代码的提示。我们想介绍应用标志,模型保存和日志记录等概念,以便用户可以使用这些工具一致地编写代码,并了解在其他代码中看到这些工具时的含义。还有许多其他方法可以编写好的生产代码,但下面的秘籍中将显示完整的示例。
生产机器学习模型的一个好方法是将训练和评估程序分开。在本节中,我们将说明一个评估脚本,该脚本已经扩展到包括单元测试,模型保存和加载以及评估。
在本文中,我们将向您展示如何使用上述标准实现评估脚本。代码实际上包含一个训练脚本和一个评估脚本,但是对于这个秘籍,我们只会向您展示评估脚本。提醒一下,两个脚本都可以在在线 GitHub 仓库和 Packt 官方仓库中看到。
对于即将到来的示例,我们将实现第 9 章,回归神经网络中的第一个 RNN 示例,该示例试图预测文本消息是垃圾邮件还是非垃圾邮件。我们将假设 RNN 模型与词汇一起被训练和保存。
import os
import re
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Define App Flags
tf.flags.DEFINE_string("storage_folder", "temp", "Where to store model and data.")
tf.flags.DEFINE_float('learning_rate', 0.0005, 'Initial learning rate.')
tf.flags.DEFINE_float('dropout_prob', 0.5, 'Per to keep probability for dropout.')
tf.flags.DEFINE_integer('epochs', 20, 'Number of epochs for training.')
tf.flags.DEFINE_integer('batch_size', 250, 'Batch Size for training.')
tf.flags.DEFINE_integer('rnn_size', 15, 'RNN feature size.')
tf.flags.DEFINE_integer('embedding_size', 25, 'Word embedding size.')
tf.flags.DEFINE_integer('min_word_frequency', 20, 'Word frequency cutoff.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')
FLAGS = tf.flags.FLAGS
def clean_text(text_string):
text_string = re.sub(r'([^sw]|_|[0-9])+', '', text_string)
text_string = " ".join(text_string.split())
text_string = text_string.lower()
return text_string
def load_vocab():
vocab_path = os.path.join(FLAGS.storage_folder, "vocab")
vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(vocab_path)
return vocab_processor
def process_data(input_data, vocab_processor):
input_data = clean_text(input_data)
input_data = input_data.split()
processed_input = np.array(list(vocab_processor.transform(input_data)))
return processed_input
def get_input_data():
input_text = input("Please enter a text message to evaluate: ")
vocab_processor = load_vocab()
return process_data(input_text, vocab_processor)
对于此示例,我们通过要求用户键入来创建评估数据。虽然许多应用将通过提供的文件或 API 请求获取数据,但我们可以相应地更改此输入数据函数。
class clean_test(tf.test.TestCase):
# Make sure cleaning function behaves correctly
def clean_string_test(self):
with self.test_session():
test_input = '--Tensorflow's so Great! Dont you think so? '
test_expected = 'tensorflows so great don you think so'
test_out = clean_text(test_input)
self.assertEqual(test_expected, test_out)
main
函数。main
函数将获取数据,设置图,加载变量,输入处理过的数据,然后打印输出,如下面的代码片段所示:def main(args):
# Get flags
storage_folder = FLAGS.storage_folder
# Get user input text
x_data = get_input_data()
# Load model
graph = tf.Graph()
with graph.as_default():
sess = tf.Session()
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(os.path.join(storage_folder, "model.ckpt")))
saver.restore(sess, os.path.join(storage_folder, "model.ckpt"))
# Get the placeholders from the graph by name
x_data_ph = graph.get_operation_by_name("x_data_ph").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
probability_outputs = graph.get_operation_by_name("probability_outputs").outputs[0]
# Make the prediction
eval_feed_dict = {x_data_ph: x_data, dropout_keep_prob: 1.0}
probability_prediction = sess.run(tf.reduce_mean(probability_outputs, 0), eval_feed_dict)
# Print output (Or save to file or DB connection?)
print('Probability of Spam: {:.4}'.format(probability_prediction[1]))
main()
函数或单元测试,请使用以下代码:if __name__ == "__main__":
if FLAGS.run_unit_tests:
# Perform unit tests
tf.test.main()
else:
# Run evaluation
tf.app.run()
为了评估模型,我们能够使用 TensorFlow 的应用标志加载命令行参数,加载模型和词汇处理器,然后通过模型运行处理过的数据并进行预测。
请记住通过命令行运行此脚本,并在创建模型和词汇表字典之前检查是否运行了训练脚本。
在本节中,我们将向您展示如何设置 RNN 模型以预测 TensorFlow 上的垃圾邮件或非垃圾邮件文本消息。我们将首先说明如何以 protobuf 格式保存模型,然后将模型加载到本地服务器,监听端口9000
以进行输入。
我们通过鼓励读者阅读 TensorFlow 服务网站上的官方文档和简短教程来开始本节。
对于这个例子,我们将在第 9 章,循环神经网络中重用我们在预测垃圾邮件中使用的大部分 RNN 代码和 RNNs 秘籍。我们将更改模型保存代码,以便将 protobuf 模型保存在使用 TensorFlow 服务所需的正确文件夹结构中。
请注意,本章中的所有脚本都应该从命令行 bash 提示符执行。
有关更新的安装说明,请访问官方安装站点。正常安装就像向 Linux 源添加 gpg-key 并运行以下安装命令一样简单:
$ sudo apt install tensorflow-model-server
import os
import re
import io
import sys
import requests
import numpy as np
import tensorflow as tf
from zipfile import ZipFile
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Define App Flags
tf.flags.DEFINE_string("storage_folder", "temp", "Where to store model and data.")
tf.flags.DEFINE_float('learning_rate', 0.0005, 'Initial learning rate.')
tf.flags.DEFINE_float('dropout_prob', 0.5, 'Per to keep probability for dropout.')
tf.flags.DEFINE_integer('epochs', 20, 'Number of epochs for training.')
tf.flags.DEFINE_integer('batch_size', 250, 'Batch Size for training.')
tf.flags.DEFINE_integer('rnn_size', 15, 'RNN feature size.')
tf.flags.DEFINE_integer('embedding_size', 25, 'Word embedding size.')
tf.flags.DEFINE_integer('min_word_frequency', 20, 'Word frequency cutoff.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')
FLAGS = tf.flags.FLAGS
请注意此代码与教程代码的相似之处。这里的主要区别在于模型名称,版本号以及我们正在保存 RNN 而不是 CNN 的事实。
# Save the finished model for TensorFlow Serving (pb file)
# Here, it's our storage folder / version number
out_path = os.path.join(tf.compat.as_bytes(os.path.join(storage_folder, '1')))
print('Exporting finished model to : {}'.format(out_path))
builder = tf.saved_model.builder.SavedModelBuilder(out_path)
# Build the signature_def_map.
classification_inputs = tf.saved_model.utils.build_tensor_info(x_data_ph)
classification_outputs_classes = tf.saved_model.utils.build_tensor_info(rnn_model_outputs)
classification_signature = (tf.saved_model.signature_def_utils.build_signature_def(
inputs={tf.saved_model.signature_constants.CLASSIFY_INPUTS:
classification_inputs},
outputs={tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES:
classification_outputs_classes},
method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))
tensor_info_x = tf.saved_model.utils.build_tensor_info(x_data_ph)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y_output_ph)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'texts': tensor_info_x},
outputs={'scores': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict_spam': prediction_signature,
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
classification_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print('Done exporting!')
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oZO6oUMt-1681566911077)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/4b09d4e9-2abf-4884-8a45-ddef5b4247db.png)]
A screenshot of the directory structure that TensorFlow Serving expects.
上面的屏幕截图显示了所需的目录结构。在其中,我们有我们定义的数据目录temp
,然后是我们的模型版本号1
。在版本号目录中,我们保存我们的 protobuf 模型和一个包含要保存的所需变量的variables
文件夹。
我们应该知道,在我们的数据目录中,TensorFlow 服务将查找整数文件夹。 TensorFlow 服务将自动启动并在最大整数下获取模型。这意味着要部署新模型,我们需要将其标记为版本 2,并将其粘贴在也标记为
2
的新文件夹下。然后,TensorFlow 服务将自动获取模型。
model_name
和model_base_path
参数调用命令tensorflow_model_server
。然后,TensorFlow Serving 查找版本号文件夹并选择最大版本编号的模型。然后它将它部署到机器上,命令通过作为参数给出的端口运行。在以下示例中,我们在本地计算机(0.0.0.0
)上运行,并且接受的默认端口是9000
:$ tensorflow_model_server --port=9000 --model_name=spam_ham --model_base_path=<directory of our code>/tensorflow_cookbook/10_Taking_TensorFlow_to_Production/06_Using_TensorFlow_Serving/temp/
2018-08-09 12:05:16.206712: I tensorflow_serving/model_servers/main.cc:153] Building single TensorFlow model file config: model_name: spam_ham model_base_path: .../temp/
2018-08-09 12:05:16.206874: I tensorflow_serving/model_servers/server_core.cc:459] Adding/updating models.
2018-08-09 12:05:16.206903: I tensorflow_serving/model_servers/server_core.cc:514] (Re-)adding model: spam_ham
2018-08-09 12:05:16.307681: I tensorflow_serving/core/basic_manager.cc:716] Successfully reserved resources to load servable {name: spam_ham version: 1}
2018-08-09 12:05:16.307744: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: spam_ham version: 1}
2018-08-09 12:05:16.307773: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: spam_ham version: 1}
2018-08-09 12:05:16.307829: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:360] Attempting to load native SavedModelBundle in bundle-shim from: .../temp/1
2018-08-09 12:05:16.307867: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:242] Loading SavedModel with tags: { serve }; from: .../temp/1
2018-08-09 12:05:16.313811: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-08-09 12:05:16.325866: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:161] Restoring SavedModel bundle.
2018-08-09 12:05:16.329290: I exte