- 短视频时代,普通人如何保护个人隐私?——从SSL证书看数据安全
安全
在短视频时代,每天数以亿计的用户上传内容、互动评论、甚至进行直播购物。然而,这些行为背后潜藏着隐私泄露的风险:账号密码被盗、支付信息被窃取、个人数据遭篡改……如何在这些场景中保护隐私?SSL证书作为互联网安全的基石,正扮演着关键角色。本文将从技术原理到实践建议,为你揭开SSL证书如何成为隐私保护的“隐形盾牌”。一、SSL证书:隐私保护的第一道防线SSL(SecureSocketsLayer)证书是
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 基于纯视觉的 GUI 代理的屏幕解析工具(OmniParser)
deepdata_cn
应用软件GUI
OmniParser是一款开源工具,可通过解析用户界面截图生成结构化数据,助力打造视觉驱动的GUI自动化代理,赋能跨平台交互。一、技术原理1.数据集构建:从流行网页和应用中提取数据,构建可交互图标检测数据集和图标描述数据集,为模型训练提供基础。2.检测模型:使用YOLOv8模型在可交互图标检测数据集上进行微调,能够识别和定位用户界面中的可交互区域,如按钮、图标等。3.描述模型:利用BLIP-v2模
- 【CMake指南】第3篇:编写可维护的构建脚本(变量与作用域管理)
JuicyActiveGilbert
CMake指南开发语言c++CMake教程
源码及CMakeLists.txt沿用第1篇或第2篇的均可,本文沿用第2篇的相关文件1.CMake变量的基础操作1.1定义与修改变量在CMakeLists.txt后面加入如下代码:#定义普通变量set(MY_VAR"HelloWorld")#修改变量值set(MY_VAR"NewValue")#列表变量(分号分隔)set(MY_LISTa.cppb.cppc.cpp)#或显式列表set(MY_LI
- MySQL的覆盖索引
.晚安.
mysql数据库
MySQL的覆盖索引前言当一个索引包含了查询所需的全部字段时,就可以提高查询效率,这样的索引又被称之为覆盖索引。以MySQL常见的三种存储引擎为例:InnoDB、MyISAM、Memory,对于覆盖索引提高查询效率的方式均不同,下面让我们分别讲讲:InnoDB在InnoDB中,主键索引的叶子节点存储完整的数据行,称为聚簇索引,而唯一索引、普通索引、联合索引的叶子节点只存储索引字段和主键值,称之为二
- 如何优化AI模型的Prompt:深度指南
Earth explosion
人工智能prompt
随着人工智能(AI)技术的快速发展,AI模型在文本生成、翻译、问答等领域的应用越来越广泛。在使用这些模型时,**Prompt(提示)**的质量直接影响输出结果的好坏。优化Prompt不仅能提升生成文本的准确性,还能显著提高工作效率。作为一个希望提升AI应用效果的普通人,如何才能优化Prompt呢?本文将为你提供一份详细的指南,涵盖从基础知识到高级技巧的各个方面。一、什么是Prompt?1.1定义P
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- 软件工程师的招聘
天黑了g
开发团队管理软件工程团队开发
要建设良好的开发团队,首先得招聘到合适的人才。合适的团队成员能够事半功倍,管理也会省心省力。本次要说的主要内容是关于普通软件开发工程师的招聘目标、面试过程和新人试用期阶段。招聘的岗位职责和技术要求一般是比较容易确定的,但在能力程度上就得好好考虑,是要招初级、中级还是高级?初级程序员主要作为辅助,写一些简单业务的类和方法,干一些杂货,一般工作经验不超过1年。中级工程师能够单独开发常规业务模块或完整的
- RV1126笔记三十七:PaddleOCR检测模型训练
殷忆枫
RV1126项目实战笔记
若该文为原创文章,转载请注明原文出处。PaddleOCR检测模型训练及验证测试1、准备数据集在PaddleOCR目录下新建文件夹:train_data,这个文件夹用于存放数据集的。使用的是网上大佬提供的车牌识别数据集,下载后,解压到train_data目录下。可以自己网上找,了可以找我要数据集,或自己标注数据集。2、配置文件在PaddleOCR主目录下:configs/det/ch_ppocr_v
- Spring工厂Bean FactoryBean
finajoy
Springspringjava后端
首先什么是bean,我感觉我看了这么久,一直没太明白,这里听老师说,bean就是对象。在Spring中有两种类型的bean,一种是普通bean,另一种是工厂bean(FactoryBean)普通bean和FactoryBean的区别:普通bean,在配置文件中定义bean类型就是返回类型。工厂bean,在配置文件中定义的bean类型可以和返回的类型不一样。演示工厂bean:创建类,让这个类作为工厂
- 玩转 Vue 3:自定义指令让页面魔法随心而动
心中的灯塔
vue.jsjavascript前端
玩转Vue3:自定义指令让页面魔法随心而动玩转Vue3:自定义指令让页面魔法随心而动什么是自定义指令?全局注册示例:高亮效果指令注册自定义指令在组件中使用局部注册与高级用法局部注册示例小结玩转Vue3:自定义指令让页面魔法随心而动在Vue3中,自定义指令为我们提供了在模板中直接操作DOM的能力,不仅可以让我们的页面效果更炫酷,还能将一些通用逻辑抽离出来,做到代码复用。本文将带你了解Vue3自定义指
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- RAG技术的PDF智能问答系统
AI Echoes
深度学习
关键要点系统基于RAG(检索增强生成)技术,允许用户上传PDF并进行智能问答。使用Ollama的deepseek-r1模型和FAISS向量数据库,支持普通对话和基于PDF的问答模式。提供简洁的Web界面,支持文件拖拽上传和多轮对话。研究表明,系统适合处理PDF内容查询,但性能可能因PDF复杂性而异。系统概述这个PDF智能问答系统是一个基于RAG技术的工具,旨在帮助用户通过上传PDF文件进行智能交互
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
AIBigModel
人工智能
来源:暗涌Waves,整理:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Ha
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- C++8--赋值运算符重载
大胆飞猪
c++
1.运算符重载C++引入运算符的目的是为了增强代码的可读性。运算符重载是具有特殊函数名的函数,也具有其返回值类型,函数名字以及参数列表,其返回值类型与参数列表与普通的函数相似。函数名字为:关键字operator后面接需要重载的运算符符号函数原型:返回值类型operator操作符(参数列表)注意:不能通过连接其他符号来创建新的操作符:比如operator@重载操作符必须有一个类类型参数用于内置类型的
- 深入理解 Java 中 synchronized 的使用和锁升级
谢家小布柔
java中的面试题java开发语言
目录一、synchronized的使用方式(一)修饰普通方法(二)修饰静态方法(三)修饰代码块二、synchronized的锁升级(一)无锁(二)偏向锁(三)轻量级锁(四)重量级锁在Java并发编程中,synchronized是一个非常重要的关键字,用于实现线程同步,保证在同一时刻只有一个线程可以访问被同步的代码块或方法,从而避免多线程带来的数据不一致等问题。同时,Java虚拟机(JVM)为了提高
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l