- 分布式系统中的负载均衡
樽酒ﻬق
架构设计负载均衡网络运维
目录分布式系统中的负载均衡引言1.什么是负载均衡?1.1负载均衡的目标2.负载均衡的类型2.1网络负载均衡(NetworkLoadBalancing)2.2应用负载均衡(ApplicationLoadBalancing)2.3全局负载均衡(GlobalLoadBalancing)2.4计算负载均衡(ComputeLoadBalancing)3.负载均衡算法3.1轮询(RoundRobin)3.2加
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- STM32 —— 嵌入式系统、通用计算机系统、物联网三层架构
Exhausted、
stm32单片机stm32嵌入式硬件物联网架构
目录一、嵌入式系统的概念二、通用计算机系统与嵌入式系统的比较用途硬件软件性能与功耗开发与维护三、嵌入式系统与物联网的关系四、物联网的三层架构1.感知层(PerceptionLayer)2.网络层(NetworkLayer)3.应用层(ApplicationLayer)三层架构的协作流程一、嵌入式系统的概念嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及应用程序等4部分组成,并且分为
- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- uni-app——计时器和界面交互API
阿常11
uni-app移动应用开发uni-app
API基本概要概念说明API(应用程序接口)是预先定义的方法集合,用于实现特定功能。在uni-app中,通过全局对象uni调用API,例如uni.getSystemInfoSync获取设备信息。API分类与调用规则事件监听型以on开头,如uni.onNetworkStatusChange监听网络变化。数据操作型获取数据:以get开头,如uni.getStorage读取本地缓存。设置数据:以set开
- H3C Network命令详解
weixin_30471561
转载于:https://www.cnblogs.com/fanweisheng/p/11156926.html
- Linux修改/设置服务器ip地址
大橙子房
Linuxlinux服务器centos
1.用户切换到root用户su-#普通用户切换到root用户2.cd到network-scripts目录下cd/etc/sysconfig/network-scriptsll#ll查看文件目录#找到ifcfg-exx这个格式的文件,我这里的是ifcfg-ens33#大家可能都不相同,但是前面的ifcfg-exx这些是一样的3.编辑ifcfg-ens33(每个人的文件名都不一样,要自己看文件名是什么
- 三分钟让你搞懂云计算中的CDN是什么?
云上的阿七
云计算
随着互联网的快速发展,网站的访问速度和稳定性越来越受到重视。而在众多提升网站性能的技术中,CDN(内容分发网络)无疑是一个非常重要的工具。今天,我们就来聊聊云计算中的CDN是什么,以及它是如何为网站带来显著好处的。CDN是什么?CDN,全称ContentDeliveryNetwork,翻译过来就是“内容分发网络”。它是一种分布式的网络架构,通过将网站的静态资源(如图片、视频、JavaScript文
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 华为eNSP(Enterprise Network Simulation Platform)实战指南
博睿谷IT99_
程序人生安全网络协议云计算
ENSP必会命令全集:VLAN/OSPF/ACL配置+排错指令华为eNSP是网络工程师学习和模拟企业网络部署的核心工具,支持路由器、交换机、防火墙等设备的配置与调试。以下从安装配置、实验场景、故障排查三个方面提供全流程指南。一、eNSP安装与配置1.安装准备系统要求:Windows7/10/11(推荐64位)4GB以上内存,20GB硬盘空间安装前关闭杀毒软件和防火墙(避免拦截虚拟组件)必备组件:V
- Infura 简介
倒霉男孩
区块链知识区块链web3
文章目录Infura简介Infura的主要功能Infura的替代方案(类似服务)AlchemyQuickNodeAnkrMoralisPocketNetwork什么时候选择Infura?Infura简介Infura是一个区块链基础设施即服务(BaaS,BlockchainasaService),提供高可用性的以太坊(Ethereum)节点和IPFS存储访问,让开发者可以轻松连接区块链网络,而无需自
- Ubuntu18.04虚拟机掉电重启后网卡丢失只剩下lo回环网卡ens33网卡不见了
新潮技术研究社
Qt开发问题大全算法爬虫大数据百万案例大全ubuntulinuxvmwareifconfig
某天,Ubuntu18.04虚拟机掉电重启后网卡丢失只剩下lo回环网卡执行操作:1.查看所有网卡,ifconfig-a2.执行sudodhclientens333.查看网卡驱动是否还在:lspci–v4.使能网卡:ifconfigens33up5.重启网络服务:/etc/init.d/networkingrestart6.测试:sudoaptupdate7.这里,关键的一步是,dhclienten
- 如何计算一个7B的模型训练需要的参数量以及训练时需要的计算资源
yxx122345
算法
计算理论过程见:transformer中多头注意力机制的参数量是多少?1.模型参数量的计算7B参数模型的总参数量是70亿(7billion)。这些参数主要分布在以下几个部分:Transformer层:多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNetwork)嵌入层(EmbeddingLayer):词嵌入(TokenEmbeddings)位置编码(
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- PHPer看docker容器的管理详解
PHP开源社区
PHP架构dockerpythonmysqlphp
查询容器信息dockerinspcet查询信息,包括运行情况、存贮位置、配置参数、网络设置等。查询容器的运行状态dockerinspect-f{{.State.Status}}【容器】查询容器的IPdockerinspect-f{{.NetworkSettings.IPAddress}}【容器】查询容器日志信息Ωdockerlogs【容器】-f实时打印最新的日志dockerstats实时查看容器所
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 【ComfyUI专栏】ComfyUI引用Embedded和HyperNetwork超网络
雾岛心情
ComfyUIComfyUIAIGC
大家如果使用过WebUI,那么一定知道界面中存在的Embedding和HyperNetworks。在界面中我们直接点击相应的嵌入式和超网络就能直接使用。ComfyUI的界面设计不如WEBUI直观,但我们仍可通过Text-Encoder输入Embedding来实现Embedding的引入。在C站(Civitai)上,我们可以看到种类繁多的Embedding资源。这些文件通常体积较小,大多只有几十KB
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- 031-Linux 网络诊断工具 nmap:网络扫描与漏洞检测
程序员--青青
python网络开发语言gaussdb服务器
031-Linux网络诊断工具nmap:网络扫描与漏洞检测在网络安全管理和故障排除中,网络扫描是一个非常重要的过程。它能够帮助发现网络中可能存在的漏洞、未授权的服务或设备等问题。nmap(NetworkMapper)是Linux系统中常用的一个强大工具,专门用于网络扫描、端口检测、服务识别以及漏洞检测等任务。本文将介绍nmap的基本功能及其常用用法,帮助你更好地进行网络诊断和安全分析。1.nmap
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- 网络神经架构的概念及其实际应用
2301_81121233
网络爬山算法近邻算法霍夫曼树剪枝哈希算法柔性数组
###网络神经架构的概念**网络神经架构(NeuralNetworkArchitecture)**是指用于构建和组织人工神经网络(ArtificialNeuralNetworks,ANN)的结构和方法。这些架构通常由多个层次的节点(神经元)组成,通过模拟人脑神经元之间的连接和信息传递方式,来处理复杂的数据输入并生成相应的输出。网络神经架构通常由以下几个部分组成:1.**输入层(InputLayer
- 如何使用 Python 实现生成对抗网络
NoABug
python生成对抗网络tensorflow
如何使用Python实现生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种能够生成高质量、逼真图像的深度学习模型。GAN模型由两个神经网络组成:一个生成器和一个判别器。生成器的任务是以噪声为输入,生成看似真实的图像;而判别器则需要根据输入的图像,判断该图像是真实的还是由生成器生成的。下面我们将通过Python代码来实现一个简单的GAN模型。首先,我们
- GAN模型的Python应用——生成对抗网络
代码编织匠人
python生成对抗网络开发语言
GAN模型的Python应用——生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是深度学习中的一种重要模型,已经被广泛应用于图像、文本生成等领域。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器用于生成假样本,判别器用于评估真实性。两个神经网络相互博弈,通过一次次迭代训练,最终生成器可以生成足以骗过
- 【前端入门】应该了解和知道的几个国内外前端开发资源网站
爱上大树的小猪
前端
与大家分享一下几个国内外前端开发资源网站国际资源MDNWebDocs(MozillaDeveloperNetwork)用途:MDN是Web技术领域最全面的文档库之一,涵盖了HTML、CSS、JavaScript以及浏览器API等。链接:https://developer.mozilla.orgW3Schools用途:适合初学者学习Web技术,提供从基础到进阶的教程,同时还有在线练习环境。链接:ht
- Transformer 架构深度剖析
时光旅人01号
人工智能技术科普transformer深度学习人工智能condaopencv计算机视觉
一、Transformer架构核心设计1.1整体架构Transformer由编码器(Encoder)和解码器(Decoder)堆叠而成,每个层包含:多头自注意力(Multi-HeadSelf-Attention)前馈网络(Feed-ForwardNetwork,FFN)残差连接(ResidualConnection)和层归一化(LayerNorm)关键特性:完全基于注意力机制,摒弃了循环和卷积结构
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 京准电钟分享:水利系统NTP网络时间服务器应用
北京华人开创公司
时钟系统北斗卫星授时NTP时间同步网络服务器运维时间同步时钟同步NTP服务器网络时间服务器
京准电钟分享:水利系统NTP网络时间服务器应用京准电钟分享:水利系统NTP网络时间服务器应用1.项目背景水利控制系统涵盖水文监测、闸门控制、泵站调度、数据采集与传输等多个子系统,设备分布广泛且需协同工作。系统内各设备(如PLC、RTU、SCADA服务器、传感器等)的时间一致性直接影响数据记录的准确性、事件报警的时序性以及故障分析的可靠性。为实现全系统高精度时间同步,需部署NTP(NetworkTi
- 京准电钟推荐:智能交通系统NTP时间同步服务设计方案
北京华人开创公司
时钟系统NTP时间同步卫星同步时钟ntp时钟同步时间同步网络授时网络校时
京准电钟推荐:智能交通系统NTP时间同步服务设计方案京准电钟推荐:智能交通系统NTP时间同步服务设计方案针对智能交通系统的NTP(NetworkTimeProtocol)时间同步方案设计,需确保交通设备(如信号灯、摄像头、传感器、服务器等)的时间高度一致,以提高系统协同效率和数据分析准确性。以下是完整的方案框架:一、需求分析同步精度核心设备(如信号控制机、边缘服务器)需达到**毫秒级(1-10ms
- Adaptive AUTOSAR之状态管理模块(STM)
weixin_42130902
AdaptiveAUTOSAR架构
1.STM简介状态管理(STM)负责根据从其他AUTOSAR自适应平台应用程序或自适应应用程序接收的信息确定其任何内部状态机的状态。STM使用提供的网络管理字段(NetworkHandle)控制(部分网络)的状态。STM与执行管理(EXM)交互,以请求功能组和机器状态,以输入由项目需求确定的特定状态。功能组状态可能还依赖于网络管理(NM)状态。STM通过ara::com服务提供对其内部状态的访问。
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那