距离模糊与多普勒模糊

在PD雷达中,发射波形是脉冲调制信号。脉冲雷达的结构如下:

image

 

这种波形就产生了两个问题:1 距离模糊 。2多普勒模糊。二者之间又是互相矛盾的,要想有一个大的非模糊距离,则要求PRF低,如果要求减小多普勒模糊,PRF要足够高。

一、距离模糊

     雷达进行距离测量,是取得发射信号和回波的时延δt,R=cXδt/2。当回波在下一次发射脉冲之后到达,无法判断回波信号的时延,则会产生距离模糊。

    解决办法是最大非模糊距离得出 maximum δt,=Td, 计算frd>=1/ Td. 取 n1,n2=n1+1,则二者质。使1fr1=n1xfrd, fr2=n2Xfrd。在一个T周期内只有一次fr1和fr2的回波时刻重合,如下图所示。

image

假设M1是发射脉冲与真实目标接收回波之间的PRF1的间隔,M2对应于PRF2。在0到Td内,可能的结果只有M1=M2=M,或M1+1=M2

fr1<fr2  --->  T1>T2 

若 t1<t2时,即M1= M2, -----> image --->image

image 真实的目标距离image

当t1>t2时,image image

真实目标的往返时间是image

当t1=t2时,真实目标距离为模糊的。

二 多普勒模糊

image

一个周期脉冲调制的信号频谱如下。中心频率为载波频率, 谱线间隔为重频,第一零点是脉宽的倒数。

多普勒频偏小于重频时,可以用来测量非模糊速度。

例如:

image

多普勒频率fd=2v/λ=33KHz

n1Xfr1+fd1=n1Xfr1+fd1=n1Xfr1+fd1=33

假设n1=0 ,fd1=33>fr1,不成立;n1=1时,fd1=18>fr1, 仍不成立;n1=2时,fd1=3KHz;

同样n2=1时,fd2=15KHz; n3=1时,fd3=12KHz.

对于第二个问题 fd=n1Xfr1+8=n2Xfr2+2=n3Xfr3+17

image 

当n1=n2=2,n3=1时,fd=38KHz

你可能感兴趣的:(距离模糊与多普勒模糊)