日常节省 30%计算资源:阿里云实时计算 Flink 自动调优实践

一、历史背景

日常节省 30%计算资源:阿里云实时计算 Flink 自动调优实践_第1张图片
批作业在算子实际处理数据时,可以提前感知到要处理的这部分数据有多大。从而可以根据数据量的大小,选择合适的资源处理数据。但流作业是一种 long-running 的作业,它的特点是流量会随着时间进行变化。
我们没有办法在流作业刚启动时,就预估到未来的流量有多少,需要多少资源。没有一份初始的通用资源配置可以适用于一个流作业的所有场景。

完整内容请点击下方链接查看:

https://developer.aliyun.com/article/1207409?utm_content=g_10...

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

你可能感兴趣的:(日常节省 30%计算资源:阿里云实时计算 Flink 自动调优实践)