1.基于Redis实现分布式锁
Redis分布式锁原理如上图所示,当有多个Set命令发送到Redis时,Redis会串行处理,最终只有一个Set命令执行成功,从而只有一个线程加锁成功
2:SetNx命令加锁
利用_Redis的setNx_命令在Redis数据库中创建一个
利用如上的_setNx_命令便可以简单的实现加锁功能,当多个线程去执行这个加锁命令时,_只有一个线程执行成功,然后执行业务逻辑,其他线程加锁失败返回或者重试_
3:死锁问题
上面的_setNx_命令实现了基本的加锁功能,但存在一个致命的问题是,_当程序在执行业务代码崩溃时,无法再执行到下面的解锁指令,从而导致出现死锁问题_
为了解决死锁问题,这里就需要_引入过期时间的概念_,过期时间是给当前这个_key设置一定的存活时间,当存活时间到期后,Redis就会自动删除这个过期的Key_,从而使得程序在崩溃时也能_到期自动释放锁_
如上图所示,使用Redis的_expire命令_来为锁设置过期时间,从而实现到期自动解锁的功能,但这里仍然还存在一个问题就是_加锁与给锁设置过期时间这两个操作命令并不是原子命令_
考虑下面这种情况:
当程序在加锁完成后,在设置过期时间前崩溃,这时仍然会造成锁无法自动释放,从而产生死锁现象
4:使用原子命令
针对上面加锁与设置过期时间不是原子命令的问题,Redis为我们提供了一个原子命令如下:
通过_SetNx(key,value,timeOut)_这个_结合加锁与设置过期时间的原子命令_就能完整的实现基于Redis的分布式锁的加锁步骤
5:解锁原理
解锁原理就是基于Redis的_del删除key指令_
6:错误删除锁问题
上面直接删除key来解锁方式会存在一个问题,考虑下面这种情况:
(1)线程1执行业务时间过长导致自己加的锁过期
(2)这时线程2进来加锁成功
(3)然后线程1业务逻辑执行完毕开始执行del key命令
(4)_这时就会出现错误删除线程2加的锁_
(5)错误删除线程2的锁后,线程3又可以加锁成功,导致有两个线程执行业务代码
7:加入锁标识
为了解决这种错误删除其他线程的锁的问题,在这里需要对加锁命令进行改造,_需要在value字段里加入当前线程的id_,在这里可以使用uuid来实现。线程在删除锁的时候,用自己的uuid与Redis中锁的uuid进行比较,_如果是自己的锁就进行删除,不是则不删除_
如上图所示,加锁时_在value字段中存入当前线程的id,然后在解锁时通过比较当前的锁是否是自己的来判断是否加锁成功,_这样就解决了错误删除别人的锁的问题,_但这里同样存在原子命令问题,比较并删除_这个操作并不是原子命令,考虑下面这种情况
(1)线程1获取uuid并判断锁是自己的
(2)_准备解锁时出现GC或者其他原因导致程序卡顿无法立即执行Del命令_,导致线程1的锁过期
(3)线程2就会在这个时候加锁成功
(4)线程1卡顿结束继续执行解锁指令,就会错误删除线程2的锁
这个问题出现的根本原因还是_比较并删除这两个操作并不是原子命令,只要两个命令被打断就有可能出现并发问题,如果将两个命令变为原子命令就能解决这个问题_
8:引入lua脚本实现原子删除操作
_lua脚本_是一个非常轻量级的脚本语言,Redis底层天生支持lua脚本的执行,一个lua脚本中可以包含多条Redis命令,Redis会将整个lua脚本当作原子操作来执行,从而实现聚合多条Redis指令的原子操作,其原理如下图所示:
这里在解锁时,使用lua脚本将_比较并删除_操作变为原子操作
//lua脚本如下
luaScript = " if redis.call('get',key) == value then
return redis.call('del',key)
else
return 0
end;"
如上面的lua脚本所示,Redis会将整个lua脚本当作一个单独的命令执行,从而实现多个命令的原子操作,避免多线程竞争问题,最终结合lua脚本实现了一个完整的分布式的加锁和解锁过程,伪代码如下:
uuid = getUUID();
//加锁
lockResut = redisClient.setNx(key,uuid,timeOut);
if(!lockResult){
return;
}
try{
//执行业务逻辑
}finally{
//解锁
redisClient.eval(delLuaScript,keys,values)
}
//解锁的lua脚本
delLuaScript = " if redis.call('get',key) == value then
return redis.call('del',key)
else
return 0
end;"
到此,我们最终实现了一个加锁和解锁功能较为完整的redis分布式锁了,当然作为一个锁来说,还有一些其他的功能需要进一步完善,例如_考虑锁失效问题,可重入问题等_
9:自动续期功能
在执行业务代码时,由于业务执行时间长,最终可能导致在业务执行过程中,自己的锁超时,然后锁自动释放了,在这种情况下第二个线程就会加锁成功,从而导致数据不一致的情况发生,如下图所示:
对于上述的这种情况,原因是由_于设置的过期时间太短或者业务执行时间太长_导致锁过期,但是为了避免死锁问题又必须设置过期时间,那这就需要引入自动续期的功能,即在加锁成功时,_开启一个定时任务,自动刷新Redis加锁key的超时时间,_从而避免上诉情况发生,如下图所示:
uuid = getUUID();
//加锁
lockResut = redisClient.setNx(key,uuid,timeOut);
if(!lockResult){
return;
}
//开启一个定时任务
new Scheduler(key,time,uuid,scheduleTime)
try{
//执行业务逻辑
}finally{
//删除锁
redisClient.eval(delLuaScript,keys,values)
//取消定时任务
cancelScheduler(uuid);
}
如上诉代码所示,_在加锁成功后可以启动一个定时任务来对锁进行自动续期,_定时任务的执行逻辑是:
(1)判断Redis中的锁是否是自己的
(2)如果存在的话就使用expire命令重新设置过期时间
这里由于需要两个Redis的命令,所以也需要使用lua脚本来实现原子操作,代码如下所示:
luaScript = "if redis.call('get',key) == value) then
return redis.call('expire',key,timeOut);
else
return 0;
end;"
10:可重入锁
对于一个功能完整的锁来说,可重入功能是必不可少的特性,所谓的锁可重入就是同一个线程,第一次加锁成功后,在第二次加锁时,无需进行排队等待,只需要判断是否是自己的锁就行了,可以直接再次获取锁来执行业务逻辑,如下图所示:
实现可重入机制的原理就是_在加锁的时候记录加锁次数,在释放锁的时候减少加锁次数,这个加锁的次数记录可以存在Redis中,如下图所示:_
如上图所示,加入可重入功能后,加锁的步骤就变为如下步骤:
(1)判断锁是否存在
(2)判断锁是否是自己的
(3)增加加锁的次数
由于增加次数以及减少次数是多个操作,这里需要再次使用lua脚本来实现,同时由于这里需要在Redis中存入加锁的次数,所以需要使用到Redis中的Map数据结构_Map(key,uuid,lockCount),_加锁lua脚本如下:
//锁不存在
if (redis.call('exists', key) == 0) then
redis.call('hset', key, uuid, 1);
redis.call('expire', key, time);
return 1;
end;
//锁存在,判断是否是自己的锁
if (redis.call('hexists', key, uuid) == 1) then
redis.call('hincrby', key, uuid, 1);
redis.call('expire', key, uuid);
return 1;
end;
//锁不是自己的,返回加锁失败
return 0;
_加入可重入功能后的_解锁逻辑就变为:
(1)判断锁是否是自己的
(2)如果是自己的则减少加锁次数,否则返回解锁失败
//判断锁是否是自己的,不是自己的直接返回错误
if (redis.call('hexists', key,uuid) == 0) then
return 0;
end;
//锁是自己的,则对加锁次数-1
local counter = redis.call('hincrby', key, uuid, -1);
if (counter > 0) then
//剩余加锁次数大于0,则不能释放锁,重新设置过期时间
redis.call('expire', key, uuid);
return 1;
else
//等于0,代表可以释放锁了
redis.call('del', key);
return 1;
end;
到此,我们在实现基本的_加锁与解锁_的逻辑上,又加入了_可重入和自动续期的功能_,自此一个完整的Redis分布式锁的雏形就实现了,伪代码如下:
uuid = getUUID();
//加锁
lockResut = redisClient.eval(addLockLuaScript,keys,values);
if(!lockResult){
return;
}
//开启一个定时任务
new Scheduler(key,time,uuid,scheduleTime)
try{
//执行业务逻辑
}finally{
//删除锁
redisClient.eval(delLuaScript,keys,values)
//取消定时任务
cancelScheduler(uuid);
}
11:Zookeeper实现分布式锁
Zookeeper是一个分布式协调服务,分布式协调主要是来解决分布式系统中多个应用之间的数据一致性,Zookeeper内部的数据存储方式类似于文件目录形式的存储结构,它的内存结果如下图所示:
12:Zookeeper加锁原理
在Zookeeper中的指定路径下创建节点,然后客户端根据当前路径下的节点状态来判断是否加锁成功,如下图一种情况为例,线程1创建节点成功后,线程2再去创建节点就会创建失败
13:Zookeeper节点类型
持久节点:在Zookeeper中创建后会进行持久储存,直到客户端主动删除
临时节点:以客户端会话Session维度创建节点,一旦客户端会话断开,节点就会自动删除
临时/持久顺序节点:在同一个路径下创建的节点会对每个节点按创建先后顺序编号
zookeeper.exists("/watchpath",new Watcher() {
@Override
public void process(WatchedEvent event) {
System.out.println("进入监听器");
System.out.println("监听路径Path:"+event.getPath());
System.out.println("监听事件类型EventType:"+event.getType());
}
});
14:利用临时顺序节点和监听机制来实现分布式锁
实现分布式锁的方式有多种,我们可以使用临时节点和顺序节点这种方案来实现分布式锁:
1:使用临时节点可以在客户端程序崩溃时自动释放锁,避免死锁问题
2:使用顺序节点的好处是,可以利用锁释放的事件监听机制,来实现_阻塞监听式的分布式锁_
下面将基于这两个特性来实现分布式锁
15:加锁原理
1:首先在Zookeeper上创建临时顺序节点Node01、Node02等
2:第二步客户端拿到加锁路径下所有创建的节点
3:判断自己的序号是否最小,如果最小的话,代表加锁成功,如果不是最小的话,就对前一个节点创建监听器
4:如果前一个节点删除,监听器就会通知客户端来准备重新获取锁
加锁原理和代码入下图所示:
//加锁路径
String lockPath;
//用来阻塞线程
CountDownLatch cc = new CountDownLatch(1);
//创建锁节点的路径
Sting LOCK_ROOT_PATH = "/locks"
//先创建锁
public void createLock(){
//lockPath = /locks/lock_01
lockPath = zkClient.create(LOCK_ROOT_PATH+"/lock_", CreateMode.EPHEMERAL_SEQUENTIAL);
}
//获取锁
public boolean acquireLock(){
//获取当前加锁路径下所有的节点
allLocks = zkClient.getChildren("/locks");
//按节点顺序大小排序
Collections.sort(allLocks);
//判断自己是否是第一个节点
int index = allLocks.indexOf(lockPath.substring(LOCK_ROOT_PATH.length() + 1));
//如果是第一个节点,则加锁成功
if (index == 0) {
System.out.println(Thread.currentThread().getName() + "获得锁成功, lockPath: " + lockPath);
return true;
} else {
//不是序号最小的节点,则监听前一个节点
String preLock = allLocks.get(index - 1);
//创建监听器
Stat status = zkClient.exists(LOCK_ROOT_PATH + "/" + preLockPath, watcher);
// 前一个节点不存在了,则重新获取锁
if (status == null) {
return acquireLock();
} else {
//阻塞当前进程,直到前一个节点释放锁
System.out.println(" 等待前一个节点锁释放,prelocakPath:"+preLockPath);
//唤醒当前线程,继续尝试获取锁
cc.await();
return acquireLock();
}
}
}
private Watcher watcher = new Watcher() {
@Override
public void process(WatchedEvent event) {
//监听到前一个节点释放锁,唤醒当前线程
cc.countDown();
}
}
16:可重入锁实现
Zookeeper实现可重入分布式锁的机制是_在本地维护一个Map记录_,因为如果在Zookeeper节点维护数据的话,_Zookeeper的写操作是很慢,集群内部需要进行投票同步数据,_所以在本地维护一个Map记录来记录当前加锁的次数和加锁状态,在释放锁的时候减少加锁的次数,原理如下图所示:
//利用Map记录线程持有的锁
ConcurrentMap lockMap = Maps.newConcurrentMap();
public Boolean lock(){
Thread currentThread = Thread.currentThread();
LockData lockData = lockMap.get(currentThread);
//LockData不为空则说明已经有锁
if (lockData != null)
{
//加锁次数加一
lockData.lockCount.increment();
return true;
}
//没有锁则尝试获取锁
Boolean lockResult = acquireLock();
//获取到锁
if (lockResult)
{
LockData newLockData = new LockData(currentThread,1);
lockMap.put(currentThread, newLockData);
return true;
}
//获取锁失败
return false;
}
17:解锁原理
解锁的步骤如下:
(1)判断锁是不是自己的
(2)如果是则减少加锁次数
(3)如果加锁次数等于0,则释放锁,删除掉创建的临时节点,下一个监听这个节点的客户端会感知到节点删除事件,从而重新去获取锁
public Boolean releaseLock(){
LockData lockData = lockMap.get(currentThread);
//没有锁
if(lockData == null){
return false;
}
//有锁则加锁次数减一
lockCount = lockData.lockCount.decrement();
if(lockCount > 0){
return true;
}
//加锁次数为0
try{
//删除节点
zkClient.delete(lockPath);
//断开连接
zkClient.close();
finally{
//删除加锁记录
lockMap.remove(currentThread);
}
return true;
}
18:Redis和Zookeeper锁对比
|
|
Redis
|
Zookeeper
|
|
读性能
|
基于内存
|
基于内存
|
|
加锁性能
|
直接写内存加锁
|
Master节点创建好后与其他Follower节点进行同步,半数成功后才能返回写入成功
|
|
数据一致性
|
AP架构Redis集群之间的数据同步是存在一定的延迟的,当主节点宕机后,数据如果还没有同步到从节点上,就会导致分布式锁失效,会造成数据的不一致
|
CP架构当Leader节点宕机后,会进行集群重新选举,如果此时只有一部分节点收到了数据的话,会在集群内进行数据同步,保证集群数据的一致性
|
19:总结
使用Redis还是Zookeeper来实现分布式锁,最终还是要基于业务来决定,可以参考以下两种情况:
(1)如果业务并发量很大,Redis分布式锁高效的读写性能更能支持高并发
(2)如果业务要求锁的强一致性,那么使用Zookeeper可能是更好的选择
作者:京东物流 钟磊
来源:京东云开发者社区