sin x和cos x的若干次方的定积分

sin x和cos x的若干次方的定积分

∫ 0 π 2 sin ⁡ n x = ∫ 0 π 2 cos ⁡ n x = { n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × π 2 n 为偶数 n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × 1 n 为奇数 \int_0^{\frac{\pi}{2}}\sin^nx=\int_0^{\frac{\pi}{2}}\cos^nx= \begin{cases} \dfrac{n-1}{n}\times \dfrac{n-3}{n-2}\times \cdots\times \dfrac 12\times \dfrac{\pi}{2}\qquad n为偶数\\ \qquad \\ \dfrac{n-1}{n}\times \dfrac{n-3}{n-2}\times \cdots\times \dfrac 12\times 1\qquad n为奇数 \end{cases} 02πsinnx=02πcosnx= nn1×n2n3××21×2πn为偶数nn1×n2n3××21×1n为奇数

证明:

\qquad 根据 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx [ 0 , π 2 ] [0,\dfrac{\pi}{2}] [0,2π]上的对称性可得 ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x \int_0^{\frac{\pi}{2}}\sin^n xdx=\int_0^{\frac{\pi}{2}}\cos^n xdx 02πsinnxdx=02πcosnxdx

\qquad I n = ∫ 0 π 2 sin ⁡ n x = ∫ 0 π 2 cos ⁡ x d x I_n=\int_0^{\frac{\pi}{2}}\sin^nx=\int_0^{\frac{\pi}{2}}\cos xdx In=02πsinnx=02πcosxdx,则

I n = ∫ 0 π 2 sin ⁡ x ⋅ sin ⁡ n − 1 x d x = ∫ 0 π 2 sin ⁡ n − 1 x d ( − cos ⁡ x ) = − cos ⁡ x ⋅ sin ⁡ n − 1 x ∣ 0 π 2 − ∫ 0 π 2 ( − cos ⁡ x ) d ( sin ⁡ n − 1 x ) I_n=\int_0^{\frac{\pi}{2}}\sin x\cdot \sin^{n-1}xdx=\int_0^{\frac{\pi}{2}}\sin^{n-1}xd(-\cos x)=-\cos x\cdot \sin^{n-1}x\bigg\vert_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}(-\cos x)d(\sin^{n-1}x) In=02πsinxsinn1xdx=02πsinn1xd(cosx)=cosxsinn1x 02π02π(cosx)d(sinn1x)

= ( n − 1 ) ∫ 0 π 2 cos ⁡ 2 x ⋅ sin ⁡ n − 2 x d x = ( n − 1 ) ( ∫ 0 π 2 sin ⁡ n − 2 x d x − ∫ 0 π 2 sin ⁡ n x d x ) = ( n − 1 ) I n − 2 − ( n − 1 ) I n =(n-1)\int_0^{\frac{\pi}{2}}\cos^2x\cdot \sin^{n-2}xdx=(n-1)(\int_0^{\frac{\pi}{2}}\sin^{n-2}xdx-\int_0^{\frac{\pi}{2}}\sin^n xdx)=(n-1)I_{n-2}-(n-1)I_n =(n1)02πcos2xsinn2xdx=(n1)(02πsinn2xdx02πsinnxdx)=(n1)In2(n1)In

\qquad 等式两边同时加 ( n − 1 ) I n (n-1)I_n (n1)In n I n = ( n − 1 ) I n − 2 nI_n=(n-1)I_{n-2} nIn=(n1)In2,即 I n = n − 1 n I n − 2 I_n=\dfrac{n-1}{n}I_{n-2} In=nn1In2。由数学归纳法即可得证。

你可能感兴趣的:(数学,数学)