在十四届蓝桥杯开赛前一星期开始复习

文章目录

    • 十三届蓝桥杯国赛原题
      • 1.2022
      • 2.钟表
      • 3卡牌
      • 4最大数字

十三届蓝桥杯国赛原题

1.2022

2.钟表

试题 B: 钟表
【问题描述】
在 12 小时制的钟表中,有分针、时针、秒针来表示时间。记分针和时
针之间的夹角度数为 A(0 ≤ A ≤ 180)、分针和秒针之间的夹角度数为 B(0 ≤ B ≤ 180)。而恰好在 s 时 f 分 m 秒时,满足条件 A = 2B 且 0 ≤ s ≤ 6; 0 ≤ f < 60;0 ≤ m < 60,请问 s, f, m 分别是多少。
注意时针、分针、秒针都围绕中心匀速转动。
提交格式为三个由一个空格隔开的整数,分别表示 s, f, m。如 3 11 58表示
3 点 11 分 58 秒
问题解析
本人答案是:4 48 0.
我是这么想的,常见的那种时钟,分针和秒针走了,时针也是会跟着走的,比如有的人可能想着是6 0 15这样,但是秒针走了时针和分针其实也在走,严格来说此时分针和秒针并不是90度,分针和时针也不是180度,所以我认为是不行的。
我们知道秒针走一圈(360度)是60秒,即秒针一秒钟可以走6度;分针60分钟走一圈,即10秒钟走1度;时针12小时走一圈,即120秒走一度。根据范围我们知道我们可以枚举的最大时间是6小时59分59秒,即25199秒,我们只要从0枚举到25199,通过秒数算出分针、时针和秒针走过的角度,相减后得到角A和角B,再判断是否满足A=2*B即可。算出来后发现有两个结果:0 0 0和4 48 0,0 0 0被官方发公告ban了,所以我写的是4 48 0.
————————————————
版权声明:本文为CSDN博主「你好_Ä」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/fnmdpnmsl/article/details/125347764

#include
using namespace std;
int main()
{
    for(int i = 0; i < 25960 ; i++)
    {
        double m = (double) 1/10.0 * i ;
        double h = (double) 36 / 4320 * i ;
        double s = (double)  6 / 1.0 * i ;

        while(m > 360) m -= 360 ;
        while(s > 360) s -= 360 ;
        double a , b ;
        a = abs(m - h);
        b = abs(m - s);
        if(a == 2 * b) cout << i / 3600 << " " << i / 60 % 60 << " " << i % 60 << endl;
    }
    return 0;
}

3卡牌

2.解题思路
从题意出发,发现想直接求出答案,并没有一个很高效的办法,但如果给定我们一个 x ,让我们去判断能否凑出 x套牌,这个操作对我们来说并不难。所以我们可以考虑二分答案的做法,既然要二分那肯定得具有两段性,不难理解,如果我们可以凑出x xx套牌,那么[1,x−1]套牌也都是一定可以凑出来的,而并不一定可以凑出大于x xx的套牌数。
那么二分的check判断函数我们该如何书写呢?显然要凑够x套牌,我们需要使得每种类似的牌都有x xx张,如果已经当前判断牌的类型的数量已经大于等于x ,则不需要使用空白牌补充。如果使用当前类型的牌数加上它最多可加上的空白牌数仍然小于x ,那么此时可以直接返回false了。如果当前牌类型允许补充空白牌的数量足够给我们进行补充到 x,那么我们让空白牌的数减去需要使用的数量,如果不够用了,那么也返回false,如果可以完成所有的牌的填充,则返回true。
另外一个需要注意的点是r 的上限,以及m 的范围。m 的最大范围已经超出int,所以我们要使用long long,另外n 的最大范围是2×10^5
,而m 最大取到n^2
,能凑出的最大套牌数应该是2n,所以r的上限一定不能设小了。
整体做法的时间复杂为:O(nlogn)
————————————————
版权声明:本文为CSDN博主「执 梗」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_57487901/article/details/127124262

#include 
using namespace std;
typedef long long ll ;
const int N = 2e5 + 10;
ll n , m ;
int a[N] , b[N];
bool check(int mid , int a[] , int b[])
{
  ll ans = m;
	for (int i = 0; i < n; i++)
	{
		if (a[i] < mid)
		{
			if (mid - a[i] > b[i] || mid - a[i] > ans)return false;
			else ans -= mid - a[i];
		}
	}
	return ans >= 0;

  //bool flag = true ;
   //for(int i = 0 ; i < n ; i++) 
   //{
   //  if(a[i] + b[i] < m) flag = false;
  // }
   //return flag;
}
int main()
{
  cin >> n >> m ;
  for(int i = 0 ; i < n ; i++) cin >> a[i];
  for(int i = 0 ; i < n ; i++) cin >> b[i];
  int l = 0 , r = 2*N ;
  while(l < r)
  {
    int mid = l + r + 1 >> 1;
    if(check(mid , a , b))   l = mid ;
    else  r = mid - 1 ;
  }
  cout << l ;
  // 请在此输入您的代码
  return 0;
}

4最大数字

看上去N的范围貌似很大,达到了1e17的范围,但其实我们最多只需要考虑这最多17位数,所以可以想到爆搜得到答案。
一个数的大小是从左到右依次判断,所以我们从最左边开始枚举,我们无需关注后面的数,要利用自己的1号操作和2号操作保证当前这个数位的数一定要尽可能最大
然后分别考虑两种操作,首先两种操作不可能混用,因为它们是抵消的效果,所以要么对这个数全使用1操作,要么2操作。假设某个数位的值为x,首先考虑1号操作,使用后可以让该数位变大,出于贪心考虑,我们想让它变成9,那么需要进行9-x次1号操作,当然可能此时1号操作并不足以让我们将x变成9,但我们还是使用剩余的全部的次数将其变大,所以每次考虑1号操作应该使用的操作数t应该为t=min(n,9-x),此时x将变为x+t,然后进行下一位的判断。
其次我们考虑2号操作,这个的判断比较简单,它是让某个值减小,唯一能让某个数变大的机会就是将其减到0后再减就会变成9。那么这样操作需要的次数就是x+1,如果操作次数不够,那我们宁愿不使用,因为这只会让这个数位变得更小。
在深搜dfs的过程中,参数记录遍历到第几个数位以及此时累计的和,当搜索完所有数位后,将此时的和与答案进行一个取max,最后的值则为答案。
————————————————
版权声明:本文为CSDN博主「执 梗」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_57487901/article/details/127150940

你可能感兴趣的:(蓝桥杯,算法,职场和发展)