const double eps = 1e-8; typedef list<int>::iterator liit; inline int sign(double d){ if(d < -eps) return -1; return (d > eps) ? 1 : 0; } struct point{ double x, y, z; point(double _x=0, double _y=0, double _z=0):x(_x), y(_y), z(_z) {} void read(){ scanf("%lf%lf%lf", &x, &y, &z); } bool operator==(const point& tp){ return (!sign(x-tp.x)) && (!sign(y-tp.y)) && (!sign(z-tp.z)); } bool isOrg(){ return !sign(x) && !sign(y) && !sign(z); } point operator-(point tp){ return point(x-tp.x, y-tp.y, z-tp.z); } }; struct face{ list<int> pos; point v; //法向量 double d; //常量 }; inline bool cmp(point p1, point p2){ return (p1.x < p2.x) || (p1.x == p2.x && p1.y < p2.y) || (p1.x == p2.x && p1.y == p2.y && p1.z < p2.z); } //向量st-->ed1和st-->ed2的叉积 inline point xmul3d(point st, point ed1, point ed2){ ed1 = ed1 - st; ed2 = ed2 - st; return point(ed1.y*ed2.z-ed2.y*ed1.z, ed1.z*ed2.x-ed2.z*ed1.x, ed1.x*ed2.y-ed2.x*ed1.y); } //向量(0,0)-->p1和(0,0)-->ed2的叉积 inline double dmul3d(point p1, point p2){ return p1.x*p2.x+p1.y*p2.y+p1.z*p2.z; } inline double dist3d(point p1, point p2){ return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) + (p1.z-p2.z)*(p1.z-p2.z)); } //三维凸包类 struct convex3d{ static const int N = 305; //点的数目的最大值 point ps[N]; //求解凸包的点集 list<face> convex; //convex存储三维的凸包的各个面,这些面是三维空间的凸多边形 int pn; //点的个数 int fsign[N][N]; //添加由ps里的第a,b,c个点组成的面 void addFace(int a, int b, int c){ face tf; tf.pos.push_back(a); tf.pos.push_back(b); tf.pos.push_back(c); tf.v = xmul3d(ps[a], ps[b], ps[c]); tf.d = -dmul3d(ps[a], tf.v); convex.push_back(tf); } //插入第i个点是,对面f进行处理 int handleFace(face f, int i){ int s = sign(dmul3d(f.v, ps[i]) + f.d); liit now, nxt; now = f.pos.begin(); nxt = f.pos.begin(); nxt++; for(; nxt != f.pos.end(); nxt++, now++){ fsign[*now][*nxt] = s; } fsign[*now][*f.pos.begin()] = s; return s; } //判断第i个点是否在f里面 bool inFace(face f, int i){ liit now, nxt; int pn, nn, s; now = f.pos.begin(); nxt = f.pos.begin(); nxt++; for(pn = nn = 0; nxt != f.pos.end(); nxt++, now++){ s = sign(dmul3d(xmul3d(ps[*now], ps[*nxt], ps[i]), f.v)); if(s == 1) pn++; else if(s == -1) nn++; } s = sign(dmul3d(xmul3d(ps[*now], ps[*f.pos.begin()], ps[i]), f.v)); if(s == 1) pn++; else if(s == -1) nn++; if(pn >= 1 && nn >= 1) return false; return true; } //扩展面f,返回true表示需要删除当前的面 bool extFace(face& f, int i){ liit now, nxt; bool flag = false; now = f.pos.begin(); nxt = f.pos.begin(); nxt++; if(fsign[*now][*nxt] == 0){ list<int> tpos; while(true){ if(sign(dmul3d(xmul3d(ps[i], ps[*now], ps[*nxt]), f.v)) >= 1){ break; } now++; if(now == f.pos.end()) now = f.pos.begin(); nxt++; if(nxt == f.pos.end()) nxt = f.pos.begin(); } tpos.push_back(*now); int st = *now; while(*nxt != st){ if(sign(dmul3d(xmul3d(ps[*now], ps[i], ps[*nxt]), f.v)) >= 0){ break; } tpos.push_back(*nxt); now++; if(now == f.pos.end()) now = f.pos.begin(); nxt++; if(nxt == f.pos.end()) nxt = f.pos.begin(); } tpos.push_back(i); while(true){ now++; if(now == f.pos.end()) now = f.pos.begin(); nxt++; if(nxt == f.pos.end()) nxt = f.pos.begin(); if(*now == st) break; if(sign(dmul3d(xmul3d(ps[i], ps[*now], ps[*nxt]), f.v)) >= 1){ tpos.push_back(*now); } } f.pos = tpos; }else if(fsign[*now][*nxt] > 0){ for(; nxt != f.pos.end(); now++, nxt++){ if(fsign[*nxt][*now] < 0){ addFace(*now, *nxt, i); } } if(fsign[*f.pos.begin()][*now] < 0){ addFace(*now, *f.pos.begin(), i); } flag = true; } return flag; } //对ps里的pn个点求最小包围多面体,结果放在convex中 void initConvex(){ sort(ps, ps+pn, cmp); pn = unique(ps, ps+pn) - ps; convex.clear(); if(pn <= 2){ return; } int a, b, c; double ab, bc, ac; a = 0; b = 1; for(c = 2; c < pn; c++){ ab = dist3d(ps[a], ps[b]); bc = dist3d(ps[b], ps[c]); ac = dist3d(ps[a], ps[c]); if(sign(ab+bc-ac) == 0){ b = c; }else if(sign(ab+ac-bc) == 0){ a = c; }else if(sign(ac+bc-ab) != 0){ break; } } if(c == pn){ return; } int i, size, j; list<face>::iterator it; addFace(a, b, c); addFace(a, c, b); for(i = c+1; i < pn; i++){ size = convex.size(); for(it = convex.begin(), j = 0; j < size; j++, it++){ if(handleFace(*it, i) == 0 && inFace(*it, i)){ break; } } if(j < size) continue; for(it = convex.begin(), j = 0; j < size; j++){ if(extFace(*it, i)){ it = convex.erase(it); }else{ it++; } } } } };