定义:设 H H H是群 G G G的子群, a ∈ G a\in G a∈G
(1)集合 a ⋅ H = { a ⋅ h ∣ h ∈ H } a\cdot H = \left\{a\cdot h | h \in H\right\} a⋅H={a⋅h∣h∈H}称为 a a a所在的 H H H的左陪集
(2)集合 H ⋅ a = { h ⋅ a ∣ h ∈ H } H\cdot a = \left\{h\cdot a | h \in H\right\} H⋅a={h⋅a∣h∈H}称为 a a a所在的 H H H的右陪集
定理1 :设 H H H是群 G G G的子群
(1) R ⊆ G 2 R \subseteq G^2 R⊆G2定义为 ∀ a , b ∈ G \forall a, b \in G ∀a,b∈G, a R b aRb aRb当且仅当 b − 1 ⋅ a ∈ H b^{-1}\cdot a\in H b−1⋅a∈H,则 R R R等价关系
且 ∀ a ∈ G \forall a \in G ∀a∈G, [ a ] R = a ⋅ H \left[a\right]_R = a\cdot H [a]R=a⋅H, R R R称为 G G G关于 H H H的左陪集关系
(2) R ′ ⊆ G 2 R^{\prime} \subseteq G^2 R′⊆G2定义为 ∀ a , b ∈ G \forall a, b \in G ∀a,b∈G, a R ′ b aR^{\prime}b aR′b当且仅当 a ⋅ b − 1 ∈ H a\cdot b^{-1}\in H a⋅b−1∈H,则 R ′ R^{\prime} R′等价关系
且 ∀ a ∈ G \forall a \in G ∀a∈G, [ a ] R ′ = a ⋅ H \left[a\right]_{R^{\prime}} = a\cdot H [a]R′=a⋅H, R ′ R^{\prime} R′称为 G G G关于 H H H的右陪集关系
证明:
(1)
∀ a , b ∈ G \forall a,b \in G ∀a,b∈G,若 a R b aRb aRb,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a \in H b−1⋅a∈H,则 a − 1 ⋅ b = ( b − 1 ⋅ a ) ∈ H a^{-1}\cdot b = \left(b^{-1}\cdot a\right)\in H a−1⋅b=(b−1⋅a)∈H,所以 b R a bRa bRa
∀ a , b , c ∈ G \forall a,b,c\in G ∀a,b,c∈G,若 a R b aRb aRb且 b R c bRc bRc,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a \in H b−1⋅a∈H且 c − 1 ⋅ b ∈ H c^{-1}\cdot b\in H c−1⋅b∈H,则 c − 1 ⋅ a = ( c − 1 ⋅ b ) ⋅ ( b − 1 ⋅ a ) ∈ H c^{-1}\cdot a = \left(c^{-1}\cdot b\right)\cdot \left(b^{-1}\cdot a\right)\in H c−1⋅a=(c−1⋅b)⋅(b−1⋅a)∈H,所以 a R c aRc aRc
∀ a ∈ G , [ a ] R = a ⋅ H \forall a\in G,\left[a\right]_R = a\cdot H ∀a∈G,[a]R=a⋅H.首先, ∀ x ∈ [ a ] R , x R a \forall x\in \left[a\right]_R, xRa ∀x∈[a]R,xRa,即 a − 1 ⋅ x ∈ H a^{-1}\cdot x\in H a−1⋅x∈H,所以 x = a ⋅ ( a − 1 ⋅ x ) ∈ a ⋅ H x=a\cdot \left(a^{-1}\cdot x\right)\in a\cdot H x=a⋅(a−1⋅x)∈a⋅H,故 [ a ] R ⊆ a ⋅ H \left[a\right]_R\subseteq a\cdot H [a]R⊆a⋅H
其次, ∀ x ∈ a ⋅ H \forall x\in a\cdot H ∀x∈a⋅H, ∃ h ∈ H \exists h \in H ∃h∈H,是的 x = a ⋅ h x=a\cdot h x=a⋅h,所以 a − 1 ⋅ x = h ∈ H a^{-1}\cdot x = h\in H a−1⋅x=h∈H,所以 x R a xRa xRa。 x ∈ [ a ] R x\in \left[a\right]_R x∈[a]R,故 a ⋅ H ⊆ [ a ] R a\cdot H\subseteq \left[a\right]_R a⋅H⊆[a]R,
因此 [ a ] R = a ⋅ H \left[a\right]_R=a\cdot H [a]R=a⋅H
(2)类似
定理2:设 H H H是群 G G G的子群,则 ∀ a ∈ G \forall a \in G ∀a∈G, ∣ a ⋅ H ∣ = ∣ H ⋅ a ∣ = ∣ H ∣ \left|a\cdot H\right| = \left|H\cdot a\right|=\left|H\right| ∣a⋅H∣=∣H⋅a∣=∣H∣
证明:作 f : H → a ⋅ H , h ↦ a ⋅ h f:H\to a\cdot H, h \mapsto a\cdot h f:H→a⋅H,h↦a⋅h,以及 g : H → H ⋅ a , h ↦ h ⋅ a g:H\to H\cdot a,h\mapsto h\cdot a g:H→H⋅a,h↦h⋅a
易证 f , g f,g f,g双射,故 ∣ a ⋅ H ∣ = ∣ H ⋅ a ∣ = ∣ H ∣ \left|a\cdot H\right| = \left|H\cdot a\right|=\left|H\right| ∣a⋅H∣=∣H⋅a∣=∣H∣
定理3: 设 H H H是群 G G G的子群,则 H H H的左、右陪集数相同
证明:令 S l = { a ⋅ H ∣ a ∈ G } , S r = { H ⋅ a ∣ a ∈ G } S_l=\left\{a\cdot H | a\in G\right\}, S_r = \left\{H\cdot a | a \in G\right\} Sl={a⋅H∣a∈G},Sr={H⋅a∣a∈G},作
ϕ : S l → S r , a ⋅ H ↦ H ⋅ a − 1 \phi:S_l \to S_r,\quad a\cdot H \mapsto H\cdot a^{-1} ϕ:Sl→Sr,a⋅H↦H⋅a−1
(1) ϕ \phi ϕ是良定的。若 a ⋅ H = b ⋅ H a\cdot H = b\cdot H a⋅H=b⋅H,则 a R b aRb aRb,其中 R R R为 G G G关于 H H H的左陪集关系,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a\in H b−1⋅a∈H
从而 a − 1 ⋅ ( b − 1 ) − 1 = ( b − 1 ⋅ a ) − 1 ∈ H a^{-1}\cdot \left(b^{-1}\right)^{-1}=\left(b^{-1}\cdot a\right)^{-1}\in H a−1⋅(b−1)−1=(b−1⋅a)−1∈H,即 a − 1 R ′ b − 1 a^{-1}R^{\prime}b^{-1} a−1R′b−1,其中 R ′ R^{\prime} R′为 G G G关于 H H H的右陪集关系,故 H ⋅ a − 1 = H ⋅ b − 1 H\cdot a^{-1}=H\cdot b^{-1} H⋅a−1=H⋅b−1
(2) ϕ \phi ϕ是单射。若 H ⋅ a − 1 = H ⋅ b − 1 H\cdot a^{-1} = H\cdot b^{-1} H⋅a−1=H⋅b−1,则 a − 1 R ′ b − 1 a^{-1}R^{\prime}b^{-1} a−1R′b−1,即 a − 1 ⋅ ( b − 1 ) − 1 ∈ H a^{-1}\cdot \left(b^{-1}\right)^{-1}\in H a−1⋅(b−1)−1∈H,所以 b − 1 ⋅ a = ( a − 1 ⋅ b ) − 1 ∈ H b^{-1}\cdot a=\left(a^{-1}\cdot b\right)^{-1}\in H b−1⋅a=(a−1⋅b)−1∈H,即 a R b aRb aRb,故 a ⋅ H = b ⋅ H a\cdot H = b\cdot H a⋅H=b⋅H
(3) ϕ \phi ϕ是满射。 ∀ H ⋅ a ∈ S r \forall H\cdot a\in S_r ∀H⋅a∈Sr,有 a − 1 ⋅ H ∈ S l a^{-1}\cdot H\in S_l a−1⋅H∈Sl,且 ϕ ( a − 1 ⋅ H ) = H ⋅ a \phi\left(a^{-1}\cdot H\right)=H\cdot a ϕ(a−1⋅H)=H⋅a
因此 ϕ \phi ϕ双射, ∣ S l ∣ = ∣ S r ∣ \left|S_l\right| = \left|S_r\right| ∣Sl∣=∣Sr∣
定义:设 H H H是群 G G G的子群,则称 H H H的左(右)陪集数为 H H H在 G G G中的指数,记为 [ G : H ] \left[G:H\right] [G:H]
拉格朗日定理:设 H H H是有限群 G G G的子群,则 ∣ H ∣ \left|H\right| ∣H∣整除 ∣ G ∣ \left|G\right| ∣G∣,且 ∣ G ∣ = ∣ H ∣ [ G : H ] \left|G\right|=\left|H\right|\left[G:H\right] ∣G∣=∣H∣[G:H]
证明:设 [ G : H ] = r \left[G:H\right]=r [G:H]=r,且 S l = { a 1 ⋅ H , a 2 ⋅ H , ⋯ , a r ⋅ H } S_l=\left\{a_1\cdot H, a_2\cdot H, \cdots, a_r\cdot H\right\} Sl={a1⋅H,a2⋅H,⋯,ar⋅H}
因为 a i ⋅ H ∩ a j ⋅ H = ∅ , i ≠ j a_i\cdot H\cap a_j \cdot H=\empty, i\neq j ai⋅H∩aj⋅H=∅,i=j,所以
∣ G ∣ = ∑ i = 1 r ∣ a i ⋅ H ∣ = r ∣ H ∣ = ∣ H ∣ [ G : H ] \left|G\right|=\sum_{i=1}^{r}\left|a_i\cdot H\right|=r\left|H\right|=\left|H\right|\left[G:H\right] ∣G∣=i=1∑r∣ai⋅H∣=r∣H∣=∣H∣[G:H]
推论:(1)有限群 G G G的每个元素的阶均能整除 G G G的阶
(2)质数阶的群必为循环群
证明:(1) ∀ a ∈ G , ( a ) ≤ G \forall a\in G, \left(a\right)\le G ∀a∈G,(a)≤G,所以 ∣ ( a ) ∣ \left|\left(a\right)\right| ∣(a)∣整除 ∣ G ∣ \left|G\right| ∣G∣,即 ∣ a ∣ \left|a\right| ∣a∣整除 ∣ G ∣ \left|G\right| ∣G∣
(2)设 G G G为 p p p阶群,其中 p p p是质数,其中 p p p是质数,由(1), ∀ a ∈ G \forall a\in G ∀a∈G, ∣ a ∣ \left|a\right| ∣a∣整除 p p p
若 a ≠ e a\neq e a=e,则 ∣ a ∣ ≠ 1 \left|a\right|\neq 1 ∣a∣=1,所以 ∣ a ∣ = p \left|a\right|=p ∣a∣=p,故 G = ( a ) G=\left(a\right) G=(a)
参考:
离散数学(刘玉珍)