【AI选股】如何通过python调用wencai包实现AI选股(小白也能学会)

如何通过python调用wencai包实现AI选股

  • 前言
  • 一、wencai问财如何实现AI选股?
    • 1.实用基础篇(wencai选股函数与使用方法)
    • 2.进阶发挥篇(附可转债数据处理演示)
    • 3.数据分析篇(调节参数分析数据背后的数据)
  • 总结


前言

i问财是同花顺旗下专业的机器人智能选股问答平台,致力于为投资者提供宏观数据、新闻资讯、A股、港美股、新三板、基金等各类方案。wencai是i问财的策略回测接口的Pythonic工具包,满足量化爱好者和数据分析师在量化方面的需求。


提示:以下是本篇文章正文内容,下面案例仅供参考

一、wencai问财如何实现AI选股?

1.实用基础篇(wencai选股函数与使用方法)

注意:由于近期接口地址有变动,pip安装或升级完毕,需要按如下替换步骤更新后方可使用如下代码,否则将无法访问到数据,或者程序接口会报错。(如无法访问,详见http://t.csdn.cn/nVWS7)

=导入问财包=
安装:pip install wencai
升级:pip install wencai --upgrade
替换:将我的压缩包解压,覆盖python安装目录下Lib\site-packages\下的wencai目录。(个别地址和函数有修改,修改后才可以使用wencai及更好的使用问财)

将以下代码保存为文件:wencai_xg.py

# -*- coding: utf-8 -*-

# 文件名:wencai_xg.py
import wencai as wc
# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
wc.set_variable(cn_col=True)

def xg_wencai(query,perpage=20):
    '''
    功能:调用问财接口筛选股票
    参数:query查询条件,perpage反馈的条目数
    '''
    import wencai as wc
    # 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
    wc.set_variable(cn_col=True)
    r = wc.search(query,perpage)
    return r.round(3)

if __name__ == '__main__':
    # 实用基础篇
    if 1:
    	# 选股条件
        query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'
        # 控制一次最多选多少支股票
        perpage = 10
        df = xg_wencai(query,perpage)
        print(df)
        # df_table(df,query)
        # 写入EXCEL文件
        df.to_excel("xg_wencai.xlsx", encoding="utf8")
        # 有人说我只要股票代码
        code_list = df['股票代码'].values.tolist()
        # 取5只股票代码
        print(code_list[0:5]) 

注:query 是选股的口语化条件说梦,使用中文分号间隔。也可以在问财的网页段先试试,看看别人都是怎么写的条件。

引用方法:将以上文件保存到wencai_xg.py,在同目录调用使用如下方法即可。

from wencai_xg import xg_wencai
query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'
perpage = 10
df = xg_wencai(query,perpage)

对于大多数情况,只要学会修改query 条件,即可实现AI选股。

2.进阶发挥篇(附可转债数据处理演示)

2.1 进阶相对就复杂了一些,入股只是选股,入门的内容已经足够用。进阶增加了一些美化输出和数据处理的内容,给大家示例以下数据如何加工处理,并列举可转债相关数据处理。运行那段就将if后的0改为1即可。
文件名:wencai_xg.py

# -*- coding: utf-8 -*-
import pandas as pd
import os
# 在当前目录下生成wencai目录,写入EXCEL文件放在该目录
BASEDIR=os.path.dirname(os.path.realpath(__file__))+'/wencai/'
# 如果目录不存在则新建该目录
if not os.path.exists(BASEDIR):
    os.makedirs(BASEDIR)
    
# ===============表格美化输出===============
def df_table(df,index):
    import prettytable as pt
    #利用prettytable对输出结果进行美化,index为索引列名:df_table(df,'market')
    tb = pt.PrettyTable()
    df = df.reset_index(drop = True)
    tb.add_column(index,df.index)
    for col in df.columns.values:#df.columns.values的意思是获取列的名称
        tb.add_column(col, df[col])
    print(tb)

# ===============导入问财包===============
# 安装:pip install wencai
# 升级:pip install wencai --upgrade
# 替换:将我的压缩包解压,覆盖python安装目录下Lib\site-packages\下的wencai目录。(个别地址和函数有修改,修改后才可以使用wencai及更好的使用问财)

import wencai as wc
# 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
wc.set_variable(cn_col=True)

def xg_wencai(query,perpage=20):
    '''
    功能:调用问财接口筛选股票
    参数:query查询条件,perpage反馈的条目数
    '''
    import wencai as wc
    # 若需中文字段则cn_col=True,chromedriver路径不在根目录下需指定execute_path
    wc.set_variable(cn_col=True)
    r = wc.search(query,perpage)
    return r.round(3)

if __name__ == '__main__':
    # 实用基础篇
    if 0:
    	# 选股条件
        query = '非st;非停牌;股价大于5元;流通市值50亿到750亿;股价突破444日均线;'
        # 控制一次最多选多少支股票
        perpage = 10
        df = xg_wencai(query,perpage)
        # print(df)
        df_table(df,query)
        # 写入EXCEL文件
        df.to_excel("xg_wencai.xlsx", encoding="utf8")
        

    # 进阶发挥篇
    if 1:
        query='人气排名'# 查询最近的热门股
        query='可转债概念 特高压'# 查询特高压相关概念的可转债
        df = wc.search(query,perpage=20)
        df = df.apply(pd.to_numeric, errors='ignore')
        print(df)
        # 以下三行,某些条件筛选后不包含该列信息,则会报错,将列注释掉即可。
        df = df.drop('所属概念',axis=1) 
        df['正股价-转股价'] = round((df['最新价'] - df['未清偿可转债转股价格']),2)
        df['正股较转股价溢出率'] = round(df['正股价-转股价']/df['未清偿可转债转股价格'],2)
        df_table(df,query)
        df.to_excel(BASEDIR+"wencai_search2.xlsx", encoding="utf8")

3.数据分析篇(调节参数分析数据背后的数据)

此处列举了几种数据统计的方法,具体数据意义大家一块研究。要执行代码,只需要将以下代码复制在进阶篇后面,运行那段就将if后的0改为1即可。

    if 0:
        '''策略回测,周期内的涨幅'''
        query='中证1000,30日涨幅小于10%,股价在30日均线上,沪深主板;市盈率小于20,市值从小到大排列;'
        start_date='2021-01-01'
        end_date='2022-08-30'
        period='4'
        transaction = wc.get_strategy(query=query,
                                       start_date=start_date,
                                       end_date=end_date,
                                       period=period,
                                       fall_income=1,
                                       lower_income=5,
                                       upper_income=9,
                                       day_buy_stock_num=3,
                                       stock_hold=5)
        r = transaction.history_pick(trade_date='2020-08-05', hold_num=10)
        df = r.round(3)
        df_table(df,'get_strategy')
        df.to_excel(BASEDIR+"wencai_get_strategy.xlsx", encoding="utf8")


    if 0:
        '''获取策略报告'''
        query='非停牌;非st;今日振幅小于5%;量比小于1;涨跌幅大于-5%小于1%;流通市值小于20亿;市盈率大于25小于80;主力控盘比例从大到小'
        start_date='2022-01-01'
        end_date='2022-08-05'
        period='1'
        r = wc.get_strategy(query=query,
                            start_date=start_date,
                            end_date=end_date,
                            period=period,
                            fall_income=1,
                            lower_income=5,
                            upper_income=9,
                            day_buy_stock_num=1,
                            stock_hold=2)
        print(r.profit_data) # 累计收益数据
        print(r.backtest_data) # 报告评级
        print(r.condition_data) # 准确回测语句
        print(r.history_detail(period='1')) # 历史明细查询
        print(r.history_pick(trade_date='2022-08-03', hold_num=1)) # 策略选股
        df_table(r.profit_data,'profit_data')
        df_table(r.history_pick(trade_date='2022-08-03', hold_num=1),'history_pick')
        

    if 1:
        '''获取回测分析'''
        query='非st;非停牌;周线MACD红柱上移;日线j小于-10'
        start_date='2022-01-01'
        end_date='2022-08-06'
        period='1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16' #设置多个K线范围,可分别观察这些股票在不同交易区间的涨跌幅
        print('query:',query,'\nstart_date',start_date,'end_date',end_date,'period',period)

        r = wc.get_scrape_report(query=query,
                                start_date=start_date,
                                end_date=end_date,
                                period=period,
                                benchmark='1A0001')
        print(r.report_data) # 报告评级
        print(r.backtest_data)	# 回测分析
        print(r.condition_data)  # 准确回测参数
        print(r.history_detail(period='1')) # 历史明细查询                                 

        # 检查5天的收益情况,修改n
        n = 5
        df = r.history_detail(period=str(n))
        df = df.round(3)
        # print(df)
        df_table(df,'get_scrape_report')
        df.to_excel(BASEDIR+"wencai_get_scrape_report.xlsx", encoding="utf8")

总结

首先,感谢同花顺i问财给我们提供了这么好的智能化工具。它使用很快捷,可以节省收集资料的时间,还给出你历史统计数据。i问财的答案简单明了,没有太多的主观色彩,是一个便捷客观的选股软件。另外同花顺提供的BackTest量化策略平台也很不错,这里有一个非常简单有效的历史统计工具,它主要有三个板块:回测预测,策略分析,事件回测。需要的人可以常去打卡访问。
【AI选股】如何通过python调用wencai包实现AI选股(小白也能学会)_第1张图片
其次,要感谢wencai的开发者。wencai是i问财的策略回测接口的Pythonic工具包,满足量化爱好者和数据分析师在量化方面的需求。
软件仓库:https://github.com/GraySilver/wencai

对问财的应用,个人也只是摸了个皮毛,但数据处理的基础框架已为各位奉上,希望能帮到大家。代码个人都测试过。如有人运行报错,请仔细检查开头的要求。再有问题,可在评论中留言。

最后,再次感谢同花顺和wencai包的开发者。大家也且用且珍惜吧。

你可能感兴趣的:(量化交易,金融,数据分析,python)