Hive on Spark环境搭建

文章目录

  • Hive 引擎简介
  • 环境配置 (ssh已经搭好)
    • JDK准备
    • Hadoop 准备
      • 配置集群
      • 启动集群
      • LZO压缩配置
    • Hive 准备
      • Hive 元数据配置到 MySQL
    • Spark 准备
    • Hive on Spark 配置
    • Hive on Spark测试
    • Spark on yarn & spark on hive配置

Hive 引擎简介

Hive 引擎包括:默认 MR、tez、spark

最底层的引擎就是MR (Mapreduce)无需配置,Hive运行自带

Hive on Spark:Hive 既作为存储元数据又负责 SQL 的解析优化,语法是 HQL 语法,执行引擎变成了 Spark,Spark 负责采用 RDD 执行。

Spark on Hive : Hive 只作为存储元数据,Spark 负责 SQL 解析优化,语法是 Spark SQL语法,Spark 负责采用 RDD 执行。

环境配置 (ssh已经搭好)

  • Java 1.8.0+
  • Hadoop 2.7.0
  • MySQL
  • Hive 3.1.2
  • Spark 2.3.0

为了方便只用单台虚拟机去跑,多台和单台一个套路,分发即可

JDK准备

1)卸载现有JDK

sudo rpm -qa | grep -i java | xargs -n1 sudo rpm -e --nodeps

2)解压JDK到/opt/module目录下

tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/

3)配置JDK环境变量
1)进入 /etc/profile
添加如下内容,然后保存(:wq)退出

#JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.8.0_212
export PATH=$PATH:$JAVA_HOME/bin

2)让环境变量生效

source /etc/profile

3)测试JDK是否安装成功

java -version

Hadoop 准备

部署
1)进入到Hadoop安装包路径下

cd /opt/software/

2)解压安装文件到/opt/module下面
https://hadoop.apache.org/release/2.7.0.html

wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.0/hadoop-2.7.0.tar.gz
tar -zxvf hadoop-2.7.0.tar.gz -C /opt/module/

3)将Hadoop添加到环境变量
1)获取Hadoop安装路径

/opt/module/hadoop-2.7.0

(2)打开/etc/profile文件

sudo vim /etc/profile

在profile文件末尾添加JDK路径:(shitf+g)
#HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-2.7.0
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

(3)

source /etc/profile

配置集群

1)核心配置文件
配置core-site.xml (hadoop-2.7.0/etc/hadoop/core-site.xml )




<configuration>
	
    <property>
        <name>fs.defaultFSname>
        <value>hdfs://192.168.1.250:8020value>
    property>
    
    <property>
        <name>hadoop.tmp.dirname>
        <value>/mnt/data_online/hadoop-datavalue>
    property>

    <property>
        <name>hadoop.http.staticuser.username>
        <value>atomechovalue>
    property>

    
    <property>
        <name>hadoop.proxyuser.atomecho.hostsname>
        <value>*value>
    property>
    
    <property>
        <name>hadoop.proxyuser.atomecho.groupsname>
        <value>*value>
    property>
    
    <property>
        <name>hadoop.proxyuser.atomecho.groupsname>
        <value>*value>
    property>

    <property>
 	<name>io.compression.codecsname>
 	<value>
 		org.apache.hadoop.io.compress.GzipCodec,
 		org.apache.hadoop.io.compress.DefaultCodec,
 		org.apache.hadoop.io.compress.BZip2Codec,
 		org.apache.hadoop.io.compress.SnappyCodec,
 		com.hadoop.compression.lzo.LzoCodec,
 		com.hadoop.compression.lzo.LzopCodec
 	value>
   property>
   <property>
        <name>io.compression.codec.lzo.classname>
        <value>com.hadoop.compression.lzo.LzoCodecvalue>
   property>

configuration>

2)HDFS配置文件
配置hdfs-site.xml




<configuration>
	
	<property>
        <name>dfs.namenode.http-addressname>
        <value>192.168.1.250:9870value>
    property>

	
    <property>
        <name>dfs.namenode.secondary.http-addressname>
        <value>192.168.1.250:9868value>
    property>

    
    <property>
        <name>dfs.replicationname>
        <value>1value>
    property>
configuration>

3)YARN配置文件
配置yarn-site.xml




<configuration>
	
    <property>
        <name>yarn.nodemanager.aux-servicesname>
        <value>mapreduce_shufflevalue>
    property>

    
    <property>
        <name>yarn.resourcemanager.hostnamename>
        <value>192.168.1.250value>
    property>

    
    <property>
        <name>yarn.nodemanager.env-whitelistname>
   <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOMEvalue>
    property>

    
    <property>
        <name>yarn.scheduler.minimum-allocation-mbname>
        <value>512value>
    property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mbname>
        <value>12288value>
    property>

    
    <property>
        <name>yarn.nodemanager.resource.memory-mbname>
        <value>12288value>
    property>

    
    <property>
        <name>yarn.nodemanager.pmem-check-enabledname>
        <value>falsevalue>
    property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabledname>
        <value>falsevalue>
property>

	
<property>
    <name>yarn.log-aggregation-enablename>
    <value>truevalue>
property>


<property>
    <name>yarn.log.server.urlname>
    <value>http://192.168.1.250:19888/jobhistory/logsvalue>
property>


<property>
    <name>yarn.log-aggregation.retain-secondsname>
    <value>604800value>
property>

configuration>

4)MapReduce配置文件
配置mapred-site.xml




<configuration>
	
    <property>
        <name>mapreduce.framework.namename>
        <value>yarnvalue>
property>

	
<property>
    <name>mapreduce.jobhistory.addressname>
    <value>192.168.1.250:10020value>
property>


<property>
    <name>mapreduce.jobhistory.webapp.addressname>
    <value>192.168.1.250:19888value>
property>

configuration>

5)配置workers

192.168.1.250

6)配置hadoop-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_212

启动集群

(1)如果集群是第一次启动,需要在192.168.1.250节点格式化NameNode(注意格式化之前,一定要先停止上次启动的所有namenode和datanode进程,然后再删除data和log数据)

bin/hdfs namenode -format

(2)启动HDFS

sbin/start-dfs.sh

(3)在配置了ResourceManager的节点启动YARN

sbin/start-yarn.sh

(4)Web端查看HDFS的Web页面:http://192.168.1.250:9870
Hive on Spark环境搭建_第1张图片
(5)Web端查看SecondaryNameNode : http://192.168.1.250:9868/status.html (单机模式下面什么都没有)
6)Web端查看ResourceManager : http://192.168.1.250:8088/cluster
Hive on Spark环境搭建_第2张图片

LZO压缩配置

  1. 编译hadoop-lzo
wget https://www.oberhumer.com/opensource/lzo/download/lzo-2.10.tar.gz
tar -zxvf lzo-2.10.tar.gz
cd lzo-2.10
./configure --enable-shared --prefix /usr/local/lzo-2.10
make && sudo make install

# build hadoop-lzo
C_INCLUDE_PATH=/usr/local/lzo-2.10/include \
LIBRARY_PATH=/usr/local/lzo-2.10/lib \
  mvn clean package 

2)将编译好后的 hadoop-lzo-0.4.20.jar 放入 /opt/module/hadoop-2.7.0/share/hadoop/common/

$ pwd
/opt/module/hadoop-2.7.0/share/hadoop/common/
$ ls
hadoop-lzo-0.4.20.jar

2)core-site.xml 增加配置支持 LZO 压缩

<configuration>
 <property>
 <name>io.compression.codecsname>
 <value>
 org.apache.hadoop.io.compress.GzipCodec,
 org.apache.hadoop.io.compress.DefaultCodec,
 org.apache.hadoop.io.compress.BZip2Codec,
 org.apache.hadoop.io.compress.SnappyCodec,
 com.hadoop.compression.lzo.LzoCodec,
 com.hadoop.compression.lzo.LzopCodec
 value>
 property>
 <property>
 <name>io.compression.codec.lzo.classname>
 <value>com.hadoop.compression.lzo.LzoCodecvalue>
 property>
configuration>

Hadoop 2.x 端口号 总结
Hive on Spark环境搭建_第3张图片
MySQL准备
安装mysql
1)进入msyql 库

mysql> use mysql

2)查询 user 表

mysql> select user, host from user; 

3)修改 user 表,把 Host 表内容修改为%

mysql> update user set host="%" where user="root"; 

4)刷新

mysql> flush privileges; 

Hive 准备

下载hive:https://dlcdn.apache.org/hive/
1)把 apache-hive-3.1.2-bin.tar.gz上传到 linux 的/opt/software 目录下

2)解压 apache-hive-3.1.2-bin.tar.gz 到/opt/module目录下面

tar -zxvf /opt/software/apache-hive-3.1.2-bin.tar.gz -C /opt/module/

3)修改 apache-hive-3.1.2-bin.tar.gz 的名称为 hive

mv /opt/module/apache-hive-3.1.2-bin/ /opt/module/hive

4)修改/etc/profile,添加环境变量

sudo vim /etc/profile
添加内容
#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin

source 一下 /etc/profile 文件,使环境变量生效

source /etc/profile

Hive 元数据配置到 MySQL

  • 拷贝驱动
    下载mysql JDBC: https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.30/

将 MySQL 的 JDBC 驱动拷贝到 Hive 的 lib 目录下

cp /opt/software/mysql-connector-j-8.0.33.jar /opt/module/hive/lib/
  • 配置 Metastore 到 MySQL

在$HIVE_HOME/conf 目录下新建 hive-site.xml 文件

vim hive-site.xml

添加如下内容



<configuration>
 <property>
 	<name>javax.jdo.option.ConnectionURLname>
	<value>jdbc:mysql://192.168.1.249:3306/metastore?useSSL=falsevalue>
 property>
 <property>
 	<name>javax.jdo.option.ConnectionDriverNamename>
 	<value>com.mysql.jdbc.Drivervalue>
 property>
 <property>
 	<name>javax.jdo.option.ConnectionUserNamename>
 	<value>rootvalue>
 property>
 <property>
	 <name>javax.jdo.option.ConnectionPasswordname>
 	 <value>Lettcue2kgvalue>
 property>
 <property>
 	<name>hive.metastore.warehouse.dirname>
 	<value>/user/hive/warehousevalue>
 property>
 <property>
 	<name>hive.metastore.schema.verificationname>
 	<value>falsevalue>
 property>
 <property>
 	<name>hive.server2.thrift.portname>
 	<value>10000value>
 property>
 <property>
 	<name>hive.server2.thrift.bind.hostname>
 	<value>192.168.1.249value>
 property>
 <property>
	<name>hive.metastore.event.db.notification.api.authname>
 	<value>falsevalue>
 property>

 <property>
 	<name>hive.cli.print.headername>
 	<value>truevalue>
 property>
 <property>
 	<name>hive.cli.print.current.dbname>
 	<value>truevalue>
 property>

	 
<property>
 	<name>spark.yarn.jarsname>
 	<value>hdfs://192.168.1.250:8020/spark-jars/*value>
property>


<property>
 	<name>hive.execution.enginename>
 	<value>sparkvalue>
property>

<property>
 	<name>hive.spark.client.connect.timeoutname>
 	<value>10000msvalue>
property>

configuration>
  • 启动 Hive

初始化元数据库

1)登陆MySQL

mysql -uroot -p

2)新建 Hive 元数据库

mysql> create database metastore;
mysql> quit;

3)初始化 Hive 元数据库

schematool -initSchema -dbType mysql -verbose
  • 启动 hive 客户端
    1)启动 Hive 客户端
 bin/hive

2)查看一下数据库

hive (default)> show databases;
OK
database_name
default

Spark 准备

(1)Spark 官网下载 jar 包地址:

http://spark.apache.org/downloads.html

(2)上传并解压解压 spark-2.3.0-bin-hadoop2.7.tgz

wget https://archive.apache.org/dist/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz
tar -zxvf spark-2.3.0-bin-hadoop2.7.tgz -C /opt/module/ 
mv /opt/module/spark-2.3.0-bin-hadoop2.7 /opt/module/spark

(3)配置 SPARK_HOME 环境变量

sudo vim /etc/profile
添加如下内容
# SPARK_HOME
export SPARK_HOME=/opt/module/spark
export PATH=$PATH:$SPARK_HOME/bin

source 使其生效

source /etc/profile

(4)在hive 中创建 spark 配置文件

vim /opt/module/hive/conf/spark-defaults.conf

添加如下内容(在执行任务时,会根据如下参数执行)

spark.master yarn
spark.eventLog.enabled true
spark.eventLog.dir hdfs://192.168.1.250:8020/spark-history
spark.executor.memory 2g
spark.driver.memory 1g

在 HDFS 创建如下路径,用于存储历史日志

hadoop fs -mkdir /spark-history

(5)向 HDFS 上传 Spark 纯净版 jar 包
上传并解压 spark-2.3.0-bin-without-hadoop.tgz

tar -zxvf /opt/software/spark-2.3.0-bin-without-hadoop.tgz

6)上传 Spark 纯净版 jar 包到 HDFS

hadoop fs -mkdir /spark-jars
hadoop fs -put spark-2.3.0-bin-without-hadoop/jars/* /spark-jars

Hive on Spark 配置

修改 hive-site.xml 文件

vim /opt/module/hive/conf/hive-site.xml

添加如下内容


 	spark.yarn.jars
 	hdfs://192.168.1.250:8020/spark-jars/*

 


 	hive.execution.engine
 	spark



 	hive.spark.client.connect.timeout
 	10000ms

1)兼容性说明

注意:官网下载的 Hive3.1.2 和 Spark3.0.0 默认是不兼容的。因为 Hive3.1.2 支持的 Spark版本是 2.4.5,所以需要我们重新编译 Hive3.1.2 版本。

编译步骤:官网下载 Hive3.1.2 源码,修改 pom 文件中引用的 Spark 版本为 3.0.0,如果编译通过,直接打包获取 jar 包。如果报错,就根据提示,修改相关方法,直到不报错,打包获取 jar 包。

Hive on Spark测试

1)启动 hive 客户端

bin/hive

(2)创建一张测试表

hive (default)> create table huanhuan(id int, name string); 
hive (default)> show tables;
OK
tab_name
huanhuan
Time taken: 0.117 seconds, Fetched: 1 row(s)

3)通过 insert 测试效果

hive (default)> insert into huanhuan values(1,'haoge');

Query ID = root_20230604114221_a1118af6-6182-455b-80fa-308382ddbee0
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Running with YARN Application = application_1685849514092_0001
Kill Command = /opt/module/hadoop-2.7.0/bin/yarn application -kill application_1685849514092_0001
Hive on Spark Session Web UI URL: http://192.168.1.250:43725

Query Hive on Spark job[0] stages: [0, 1]
Spark job[0] status = RUNNING
--------------------------------------------------------------------------------------
          STAGES   ATTEMPT        STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED
--------------------------------------------------------------------------------------
Stage-0 ........         0      FINISHED      1          1        0        0       0
Stage-1 ........         0      FINISHED      1          1        0        0       0
--------------------------------------------------------------------------------------
STAGES: 02/02    [==========================>>] 100%  ELAPSED TIME: 23.28 s
--------------------------------------------------------------------------------------
Spark job[0] finished successfully in 23.28 second(s)
Loading data to table default.huanhuan
OK
col1	col2
Time taken: 98.25 seconds

Spark on yarn & spark on hive配置

  1. 编辑 SPARK_HOME/conf/spark-defaults.conf
spark.master yarn
spark.driver.memory 512m
spark.yarn.am.memory 512m
spark.executor.memory 512m


# 配置spark日志
spark.eventLog.enabled true
spark.eventLog.dir hdfs://192.168.1.250:8020/spark-logs
spark.history.provider org.apache.spark.deploy.history.FsHistoryProvider
spark.history.fs.logDirectory hdfs://192.168.1.250:8020/spark-logs
spark.history.fs.update.interval 10s
spark.history.ui.port 18080
  1. 编辑/etc/profile
export HADOOP_HOME=/opt/module/hadoop-2.7.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native:$LD_LIBRARY_PATH
  1. source/etc/profile
source  /etc/profile
  1. 拷贝hadoop和hive的配置到spark
    把hadoop下的
    core-site.xml
    hdfs-site.xml
    拷贝到 SPARK_HOME/conf/

hive下的配置
hive-site.xml
拷贝到 SPARK_HOME/conf/

  1. 拷贝mysql的驱动
 cp mysql-connector-java-5.1.38-bin.jar $SPARK_HOME/jars/

例子
main.py

import pyspark
from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.enableHiveSupport().getOrCreate()

df=spark.sql("show databases")
df.show()
# https://www.projectpro.io/recipes/write-csv-data-table-hive-pyspark

提交脚本
submit.sh

SPARK_PATH=/opt/module/spark
YARN_QUEUE=default
# DEPLOY_MODE=cluster
DEPLOY_MODE=client

${SPARK_PATH}/bin/spark-submit \
 --master yarn \
 --name "spark_demo_lr" \
 --queue ${YARN_QUEUE} \
 --deploy-mode ${DEPLOY_MODE} \
 --driver-memory 4g \
 --driver-cores 2 \
 --executor-memory 4g \
 --executor-cores 2 \
 --num-executors 2 \
 --conf spark.default.parallelism=10 \
 --conf spark.executor.memoryOverhead=2g \
 --conf spark.driver.memoryOverhead=1g \
 --conf spark.yarn.maxAppAttempts=1 \
 --conf spark.yarn.submit.waitAppCompletion=true \
 ./main.py

你可能感兴趣的:(hive,spark,hadoop)