频域高通滤波:是一种基于频域表示的图像处理技术,用于增强或突出图像中高频成分的方法。它通过将图像转换到频域,应用高通滤波器来抑制或减弱低频成分,从而增强图像的边缘和细节
在频域中,可以设计各种类型的高通滤波器来实现不同的频率响应
理想的高通滤波器:通过在频率域上施加一个截止频率,将低于该截止频率的成分完全抑制,而保留高于截止频率的成分。这种滤波器具有陡峭的截止特性,但会引入振铃效应
H ( u , v ) = { 0 D ( u , v ) ≤ D 0 1 D ( u , v ) > D 0 H(u, v)=\left\{\begin{array}{ll}0 & D(u, v) \leq D_{0} \\1 & D(u, v)>D_{0}\end{array}\right. H(u,v)={01D(u,v)≤D0D(u,v)>D0
巴特沃斯高通滤波器:提供了更平滑的频率过渡,并且没有振铃效应。它可以根据设计参数调整截止频率和滚降特性的斜率
H ( u , v ) = 1 1 + [ D 0 / D ( u , v ) ] 2 n H(u, v)=\frac{1}{1+\left[D_{0} / D(u, v)\right]^{2 n}} H(u,v)=1+[D0/D(u,v)]2n1
指数高通滤波器:基于指数函数的特性,在频域上实现对低频信号的抑制,从而提取图像的高频细节
H ( u , v ) = exp { − [ D 0 D ( u , v ) ] u } H(u, v)=\exp \left\{-\left[\frac{D_{0}}{D(u, v)}\right]^{u}\right\} H(u,v)=exp{−[D(u,v)D0]u}
梯形高通滤波器:与其他高通滤波器不同,梯形高通滤波器的频率响应以梯形的形状逐渐减弱低频信号并保留高频信号
H ( u , v ) = { 0 D ( u , v ) < D 0 1 D 1 − D 0 [ D ( u , v ) − D 0 ] D 0 ≤ D ( u , v ) ≤ D 1 1 D ( u , v ) > D 1 H(u, v)=\left\{\begin{array}{cc}0 & D(u, v)
要求:尽可能地使皮肤变得平滑、白皙。采用所学基础处理方法实现题目要求
操作:
主程序
平滑:双边滤波
图像融合:将双边滤波后的图像提取肤色区域,原图提取背景区域,两图融合
图像锐化:p采用拉普拉斯算子锐化,锐化力度降为1/3
matlab实现:
clear,clc,close all;
ImageOrigin=im2double(imread('face8.jpg'));
figure,imshow(ImageOrigin),title('原图');
DBImage=DBfilt(ImageOrigin);
SkinImage1=FirstFilter(ImageOrigin); %%初步过滤
SkinArea=SecondFilter(SkinImage1); %%YCgCr空间范围肤色检测
SkinFuse=Fuse(ImageOrigin,DBImage,SkinArea);
SkinBeautify=Sharp(SkinFuse);
function Out=DBfilt(In)
[height,width,c] = size(In);
win=15; % 定义双边滤波窗口宽度
sigma_s=6; sigma_r=0.1; % 双边滤波的两个标准差参数
[X,Y] = meshgrid(-win:win,-win:win);
Gs = exp(-(X.^2+Y.^2)/(2*sigma_s^2));%计算邻域内的空间权值
Out=zeros(height,width,c);
for k=1:c
for j=1:height
for i=1:width
temp=In(max(j-win,1):min(j+win,height),max(i-win,1):min(i+win,width),k);
Gr = exp(-(temp-In(j,i,k)).^2/(2*sigma_r^2));%计算灰度邻近权值
% W为空间权值Gs和灰度权值Gr的乘积
W = Gr.*Gs((max(j-win,1):min(j+win,height))-j+win+1,(max(i-win,1):min(i+win,width))-i+win+1);
Out(j,i,k)=sum(W(:).*temp(:))/sum(W(:));
end
end
end
figure,imshow(Out),title('双边滤波');
end
function Out=FirstFilter(In)
Out=In;
[height,width,c] = size(In);
IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);
for j=1:height
for i=1:width
if (IR(j,i)<160/255 && IG(j,i)<160/255 && IB(j,i)<160) && (IR(j,i)>IG(j,i) && IG(j,i)>IB(j,i))
Out(j,i,:)=0;
end
if IR(j,i)+IG(j,i)>500/255
Out(j,i,:)=0;
end
if IR(j,i)<70/255 && IG(j,i)<40/255 && IB(j,i)<20/255
Out(j,i,:)=0;
end
end
end
figure,imshow(Out);title('非肤色初步过滤');
end
function Out=SecondFilter(In)
IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);
[height,width,c] = size(In);
Out=zeros(height,width);
for i=1:width
for j=1:height
R=IR(j,i); G=IG(j,i); B=IB(j,i);
Cg=(-81.085)*R+(112)*G+(-30.915)*B+128;
Cr=(112)*R+(-93.786)*G+(-18.214)*B+128;
if Cg>=85 && Cg<=135 && Cr>=-Cg+260 && Cr<=-Cg+280
Out(j,i)=1;
end
end
end
Out=medfilt2(Out,[3 3]);
figure,imshow(Out),title('YCgCr空间范围肤色检测');
end
function Out=Fuse(ImageOrigin,DBImage,SkinArea)
Skin=zeros(size(ImageOrigin));
Skin(:,:,1)=SkinArea;
Skin(:,:,2)=SkinArea;
Skin(:,:,3)=SkinArea;
Out=DBImage.*Skin+double(ImageOrigin).*(1-Skin);
figure,imshow(Out);title('肤色与背景图像融合');
end
function Out=Sharp(In)
H=[0 -1 0;-1 4 -1;0 -1 0]; %Laplacian锐化模板
Out(:,:,:)=imfilter(In(:,:,:),H);
Out=Out/3+In;
% imwrite(Out,'man4.jpg');
figure,imshow(Out),title('Laplacia锐化图像');
end
Python实现:
import cv2
import numpy as np
import matplotlib.pyplot as plt
def DBfilt(image):
height, width, c = image.shape
win = 15
sigma_s = 6
sigma_r = 0.1
X, Y = np.meshgrid(np.arange(-win, win + 1), np.arange(-win, win + 1))
Gs = np.exp(-(X**2 + Y**2) / (2 * sigma_s**2))
output = np.zeros((height, width, c))
for k in range(c):
for j in range(height):
for i in range(width):
temp = image[max(j - win, 0):min(j + win, height), max(i - win, 0):min(i + win, width), k]
Gr = np.exp(-(temp - image[j, i, k])**2 / (2 * sigma_r**2))
W = Gr * Gs[max(j - win, 0):min(j + win, height) - j + win + 1,
max(i - win, 0):min(i + win, width) - i + win + 1]
output[j, i, k] = np.sum(W * temp) / np.sum(W)
return output
def FirstFilter(image):
output = np.copy(image)
height, width, _ = image.shape
IR = image[:, :, 2]
IG = image[:, :, 1]
IB = image[:, :, 0]
for j in range(height):
for i in range(width):
if (IR[j, i] < 160/255 and IG[j, i] < 160/255 and IB[j, i] < 160/255) and \
(IR[j, i] > IG[j, i] and IG[j, i] > IB[j, i]):
output[j, i, :] = 0
if IR[j, i] + IG[j, i] > 500/255:
output[j, i, :] = 0
if IR[j, i] < 70/255 and IG[j, i] < 40/255 and IB[j, i] < 20/255:
output[j, i, :] = 0
return output
def SecondFilter(image):
height, width, _ = image.shape
IR = image[:, :, 2]
IG = image[:, :, 1]
IB = image[:, :, 0]
output = np.zeros((height, width))
for i in range(width):
for j in range(height):
R = IR[j, i]
G = IG[j, i]
B = IB[j, i]
Cg = (-81.085) * R + (112) * G + (-30.915) * B + 128
Cr = (112) * R + (-93.786) * G + (-18.214) * B + 128
if Cg >= 85 and Cg <= 135 and Cr >= -Cg + 260 and Cr <= -Cg + 280:
output[j, i] = 1
output = cv2.medianBlur(output.astype(np.float32), 3)
return output
def Fuse(image, db_image, skin_area):
skin = np.zeros(image.shape)
skin[:, :, 0] = skin_area
skin[:, :, 1] = skin_area
skin[:, :, 2] = skin_area
output = db_image * skin + image * (1 - skin)
return output
def Sharp(image):
kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], dtype=np.float32)
output = cv2.filter2D(image, -1, kernel)
output = output / 3 + image
return output
# 读取图像
image_origin = cv2.imread('face8.jpg')
image_origin = cv2.cvtColor(image_origin, cv2.COLOR_BGR2RGB)
# 显示原图
plt.figure()
plt.imshow(image_origin)
plt.title('原图')
plt.axis('off')
# 双边滤波
db_image = DBfilt(image_origin)
# 初步过滤
skin_image1 = FirstFilter(image_origin)
plt.figure()
plt.imshow(skin_image1)
plt.title('非肤色初步过滤')
plt.axis('off')
# YCgCr空间范围肤色检测
skin_area = SecondFilter(skin_image1)
plt.figure()
plt.imshow(skin_area, cmap='gray')
plt.title('YCgCr空间范围肤色检测')
plt.axis('off')
# 肤色与背景图像融合
skin_fuse = Fuse(image_origin, db_image, skin_area)
plt.figure()
plt.imshow(skin_fuse)
plt.title('肤色与背景图像融合')
plt.axis('off')
# Laplacian锐化图像
skin_beautify = Sharp(skin_fuse)
plt.figure()
plt.imshow(skin_beautify)
plt.title('Laplacia锐化图像')
plt.axis('off')
plt.show()