定积分求含无穷大的式子的和习题

前置知识:定积分求含无穷大的式子的和

习题1

计算 lim ⁡ n → + ∞ 1 1 3 + 2 1 3 + ⋯ + n 1 3 n 4 3 \lim\limits_{n\to+\infty}\dfrac{1^{\frac 13}+2^{\frac 13}+\cdots+n^{\frac13}}{n^{\frac 43}} n+limn34131+231++n31

解:
\qquad 原式 = lim ⁡ n → + ∞ 1 n ∑ i = 1 n ( i n ) 1 3 = ∫ 0 1 x 1 3 d x =\lim\limits_{n\to+\infty}\dfrac 1n\sum\limits_{i=1}^n(\dfrac in)^{\frac 13}=\int_0^1x^{\frac 13}dx =n+limn1i=1n(ni)31=01x31dx

= 3 4 x 4 3 ∣ 0 1 = 3 4 \qquad\qquad =\dfrac 34x^{\frac 43}\bigg\vert_0^1=\dfrac 34 =43x34 01=43


习题2

计算 lim ⁡ n → + ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) \lim\limits_{n\to +\infty}(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{n+n}) n+lim(n+11+n+21++n+n1)

解:
\qquad 原式 = lim ⁡ n → + ∞ 1 n ∑ i = 1 n 1 1 + i n =\lim\limits_{n\to +\infty}\dfrac 1n\sum\limits_{i=1}^n\dfrac{1}{1+\frac in} =n+limn1i=1n1+ni1

= ∫ 1 2 ln ⁡ x d x = ln ⁡ 2 \qquad\qquad =\int_1^2\ln xdx=\ln 2 =12lnxdx=ln2

你可能感兴趣的:(数学,数学)