记录下打完标签对数据集进行扩增,数据增强后的图片及标签名字进行修改,重点在代码只需更改文件名就可使用
无论数据增强还是修改名称,标签框位置都会跟着改变!!!
前人之鉴,最好还是数据增强后再去打标签,千万千万千万不要图省事
我使用的是Albumentations扩增数据集,增强方法请移步该博客数据增强方法
如果不知道增强效果,可参考官网给的模拟器模拟增强
import albumentations as A
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
import albumentations as A
import xml.etree.ElementTree as ET
# 定义类
class VOCAug(object):
def __init__(self,
pre_image_path=None,
pre_xml_path=None,
aug_image_save_path=None,
aug_xml_save_path=None,
start_aug_id=None,
labels=None,
max_len=4, # 修改数值可以改变名字 1-1, 2-01, 3-001, 4-0001
is_show=False):
"""
:param pre_image_path:
:param pre_xml_path:
:param aug_image_save_path:
:param aug_xml_save_path:
:param start_aug_id:
:param labels: 标签列表, 展示增强后的图片用
:param max_len:
:param is_show:
"""
self.pre_image_path = pre_image_path
self.pre_xml_path = pre_xml_path
self.aug_image_save_path = aug_image_save_path
self.aug_xml_save_path = aug_xml_save_path
self.start_aug_id = start_aug_id
self.labels = labels
self.max_len = max_len
self.is_show = is_show
print(self.labels)
assert self.labels is not None, "labels is None!!!"
# 数据增强选项
# 数据增强选项
self.aug = A.Compose([
# A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.5), # 随机亮度对比度
# A.RandomBrightness(limit=0.3, p=0.5),
# A.GaussianBlur(p=0.7), # 高斯模糊
# A.GaussNoise(var_limit=(400, 450),mean=0,p=1), # 高斯噪声
# A.CLAHE(clip_limit=2.0, tile_grid_size=(4, 4), p=0.5), # 直方图均衡
# A.Equalize(p=0.5), # 均衡图像直方图
# A.Rotate(limit=90, interpolation=0, border_mode=0, p=1), # 旋转
A.RandomRotate90(p=1),
# A.CoarseDropout(p=0.5), # 随机生成矩阵黑框
# A.OneOf([
# # A.RGBShift(r_shift_limit=50, g_shift_limit=50, b_shift_limit=50, p=0.5), #RGB图像的每个通道随机移动值
# # A.ChannelShuffle(p=0.3), # 随机排列通道
# # A.ColorJitter(p=0.3), # 随机改变图像的亮度、对比度、饱和度、色调
# # A.ChannelDropout(p=0.3), # 随机丢弃通道
# ], p=0.5),
# A.Downscale(p=0.1), # 随机缩小和放大来降低图像质量
# A.Emboss(p=0.2), # 压印输入图像并将结果与原始图像叠加
],
# voc: [xmin, ymin, xmax, ymax] # 经过归一化
# min_area: 表示bbox占据的像素总个数, 当数据增强后, 若bbox小于这个值则从返回的bbox列表删除该bbox.
# min_visibility: 值域为[0,1], 如果增强后的bbox面积和增强前的bbox面积比值小于该值, 则删除该bbox
A.BboxParams(format='pascal_voc', min_area=0., min_visibility=0., label_fields=['category_id'])
)
print('--------------*--------------')
print("labels: ", self.labels)
if self.start_aug_id is None:
self.start_aug_id = len(os.listdir(self.pre_xml_path)) +1
print("the start_aug_id is not set, default: len(images)", self.start_aug_id)
print('--------------*--------------')
def get_xml_data(self, xml_filename):
with open(os.path.join(self.pre_xml_path, xml_filename), 'r') as f:
tree = ET.parse(f)
root = tree.getroot()
image_name = tree.find('filename').text
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
bboxes = []
cls_id_list = []
for obj in root.iter('object'):
# difficult = obj.find('difficult').text
difficult = obj.find('difficult').text
cls_name = obj.find('name').text # label
if cls_name not in LABELS or int(difficult) == 1:
continue
xml_box = obj.find('bndbox')
xmin = int(xml_box.find('xmin').text)
ymin = int(xml_box.find('ymin').text)
xmax = int(xml_box.find('xmax').text)
ymax = int(xml_box.find('ymax').text)
# 标注越界修正
if xmax > w:
xmax = w
if ymax > h:
ymax = h
bbox = [xmin, ymin, xmax, ymax]
bboxes.append(bbox)
cls_id_list.append(self.labels.index(cls_name))
# 读取图片
image = cv2.imread(os.path.join(self.pre_image_path, image_name))
return bboxes, cls_id_list, image, image_name
def aug_image(self):
xml_list = os.listdir(self.pre_xml_path)
cnt = self.start_aug_id
for xml in xml_list:
file_suffix = xml.split('.')[-1]
if file_suffix not in ['xml']:
continue
bboxes, cls_id_list, image, image_name = self.get_xml_data(xml)
anno_dict = {'image': image, 'bboxes': bboxes, 'category_id': cls_id_list}
# 获得增强后的数据 {"image", "bboxes", "category_id"}
augmented = self.aug(**anno_dict)
# 保存增强后的数据
flag = self.save_aug_data(augmented, image_name, cnt)
if flag:
cnt += 1
else:
continue
def save_aug_data(self, augmented, image_name, cnt):
aug_image = augmented['image']
aug_bboxes = augmented['bboxes']
aug_category_id = augmented['category_id']
# print(aug_bboxes)
# print(aug_category_id)
name = '0' * self.max_len
# 获取图片的后缀名
image_suffix = image_name.split(".")[-1]
# 未增强对应的xml文件名
pre_xml_name = image_name.replace(image_suffix, 'xml')
# 获取新的增强图像的文件名
cnt_str = str(cnt)
length = len(cnt_str)
new_image_name = name[:-length] + cnt_str + "." + image_suffix
# 获取新的增强xml文本的文件名
new_xml_name = new_image_name.replace(image_suffix, 'xml')
# 获取增强后的图片新的宽和高
new_image_height, new_image_width = aug_image.shape[:2]
# 深拷贝图片
aug_image_copy = aug_image.copy()
# 在对应的原始xml上进行修改, 获得增强后的xml文本
with open(os.path.join(self.pre_xml_path, pre_xml_name), 'r') as pre_xml:
aug_tree = ET.parse(pre_xml)
# 修改image_filename值
root = aug_tree.getroot()
aug_tree.find('filename').text = new_image_name
# 修改变换后的图片大小
size = root.find('size')
size.find('width').text = str(new_image_width)
size.find('height').text = str(new_image_height)
# 修改每一个标注框
for index, obj in enumerate(root.iter('object')):
obj.find('name').text = self.labels[aug_category_id[index]]
xmin, ymin, xmax, ymax = aug_bboxes[index]
xml_box = obj.find('bndbox')
xml_box.find('xmin').text = str(int(xmin))
xml_box.find('ymin').text = str(int(ymin))
xml_box.find('xmax').text = str(int(xmax))
xml_box.find('ymax').text = str(int(ymax))
if self.is_show:
tl = 2
text = f"{LABELS[aug_category_id[index]]}"
t_size = cv2.getTextSize(text, 0, fontScale=tl / 3, thickness=tl)[0]
cv2.rectangle(aug_image, (int(xmin), int(ymin) - 3),
(int(xmin) + t_size[0], int(ymin) - t_size[1] - 3),
(0, 0, 255), -1, cv2.LINE_AA) # filled
cv2.putText(aug_image, text, (int(xmin), int(ymin) - 2), 0, tl / 3, (255, 255, 255), tl,
cv2.LINE_AA)
cv2.rectangle(aug_image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 0), 2)
if self.is_show:
cv2.imshow('aug_image_show', aug_image_copy)
# 按下s键保存增强,否则取消保存此次增强
key = cv2.waitKey(0)
if key & 0xff == ord('s'):
pass
else:
return False
# 保存增强后的图片
cv2.imwrite(os.path.join(self.aug_image_save_path, new_image_name), aug_image)
# 保存增强后的xml文件
tree = ET.ElementTree(root)
tree.write(os.path.join(self.aug_xml_save_path, new_xml_name))
return True
# 原始的xml路径和图片路径
PRE_IMAGE_PATH = r'E:\ML-data\VOC\images'
PRE_XML_PATH = r'E:\ML-data\VOC\labels'
# 增强后保存的xml路径和图片路径
AUG_SAVE_IMAGE_PATH ='E:\ML-data\VOC\images-aug'
AUG_SAVE_XML_PATH = 'E:\ML-data\VOC\labels-aug'
# 标签列表
LABELS = ['buds']
aug = VOCAug(
pre_image_path=PRE_IMAGE_PATH,
pre_xml_path=PRE_XML_PATH,
aug_image_save_path=AUG_SAVE_IMAGE_PATH,
aug_xml_save_path=AUG_SAVE_XML_PATH,
start_aug_id=None,
labels=LABELS,
is_show=False,
)
aug.aug_image()
# cv2.destroyAllWindows()
只需要在数据增强选项中添加想要的增强方法,其余的并不建议修改
注:请重点关注下max_len参数,数值的大小决定增强后的图片和标签名字
import os
import shutil
def rename_file(path, new_path, xml_path, new_xml):
# 打开源文件图像
file = os.listdir(path)
for i in range(len(file)):
# 获得图像扩展名
(name, extent) = os.path.splitext(file[i])
# 获得图像对应的xml文件
xml_file = os.path.join(xml_path, name + '.xml')
# 源文件
src = os.path.join(path, str(file[i]))
a = 1 + i
# 对应的xml文件复制到新的路径中,并制定新的名称
# shutil.copy(xml_file, os.path.join(new_xml, '0' + str(a) + '.xml')) #如果想新生成的名字不是1,2,3,4... 而是01,02,03.. 只需要把该行代码解除注释
shutil.copy(xml_file, os.path.join(new_xml, str(a) + '.xml'))
# 新图像对应的名字及路径
# new = os.path.join(new_path, '0' + str(a) + '.jpg')
new = os.path.join(new_path, str(a) + '.jpg')
# 文件重命名,且源文件夹中无文件
os.rename(src, new)
if __name__ == "__main__":
path = r'E:\ML-data\VOCdevkit(new)\VOC2007\img'
new_path = r"E:\ML-data\VOCdevkit(new)\VOC2007\JPEGImages"
xml_path = r'E:\ML-data\VOCdevkit(new)\VOC2007\xml'
new_xml = r'E:\ML-data\VOCdevkit(new)\VOC2007\Annotations'
rename_file(path, new_path, xml_path, new_xml)
只需要更改为自己的文件名
注:该代码生成图片新名称时,相当于把原来文件夹的图片移到新的文件夹中,原来的文件夹的图片就没了,记得要备份一下再运行代码(xml原文件夹仍然存在,不需要备份)
具体是干啥用的,请看代码行注释
仔细一想,还得加上xml转txt的代码,正好配套
这是xml转txt 的代码(修改对于的路径就可),依次运行下面两个代码就会得到如图的文件夹
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["buds"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open(r'E:\Deep learning\yoloair-iscyy-beta\VOCdata\Annotations\%s.xml' % (image_id), encoding='UTF-8')
out_file = open(r'E:\Deep learning\yoloair-iscyy-beta\VOCData\labels\%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
# difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('E:\Deep learning\yoloair-iscyy-beta\VOCData/labels/'):
os.makedirs('E:\Deep learning\yoloair-iscyy-beta/VOCData/labels/')
image_ids = open('E:\Deep learning\yoloair-iscyy-beta/VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
if not os.path.exists('E:\Deep learning\yoloair-iscyy-beta/VOCData/dataSet_path/'):
os.makedirs('E:\Deep learning\yoloair-iscyy-beta/VOCData/dataSet_path/')
list_file = open('dataSet_path/%s.txt' % (image_set), 'w')
# 这行路径不需更改,这是相对路径
for image_id in image_ids:
list_file.write('E:\Deep learning\yoloair-iscyy-beta/VOCData/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0 # 训练集和验证集所占比例。 这里没有划分测试集
train_percent = 0.9 # 训练集所占比例,可自己进行调整
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
这是把数据集和标签分到train和val两个文件夹中的代码
# 在使用v5或者v7时,数据集的格式大部分都是如下所示
# VOCdevkit
# |---- Annotations (存放的xml)
# |---- JEPGImages (存放的数据集图片)
#
# 但像v6,你就必须把你的数据集弄成如下格式
# mydata
# |----- images
# |---- train
# |---- val
# |----- labels
# |---- train
# |---- val
# 所以需要用的以下代码来把图片和标签放在上边的文件夹里
import os
import shutil
# 读入分类的标签txt文件
label_file = open(r"E:\OtherModles\YOLOv6-main\VOCdata\ImageSets\Main\train.txt", 'r')
# 原始文件的根目录 JPEGImages 划分图片/ labels 划分标签
input_path = "E:\OtherModles\YOLOv6-main\VOCdata\labels"
# 保存文件的根目录
output_path = "E:\OtherModles\YOLOv6-main\My_DATA/labels/train"
# 一行行读入标签文件
data = label_file.readlines()
# 计数用
i = 1
# 遍历数据
for line in data:
# 通过空格拆分成数组
str1 = line.split(" ")
# 第一个是文件名
file_name = str1[0].strip()
# 原始文件的路径
old_file_path = os.path.join(input_path, file_name + ".jpg")
# old_file_path = os.path.join(input_path, file_name + ".txt") # 当你需要把label放在train/val两个文件夹时,解除注释
# 新文件路径
new_file_path = output_path
# 如果路径不存在,则创建
if not os.path.exists(new_file_path):
print("路径 " + new_file_path + " 不存在,正在创建......")
os.makedirs(new_file_path)
# 新文件位置
new_file_path = os.path.join(new_file_path, file_name + ".png")
# new_file_path = os.path.join(new_file_path, file_name + ".txt") # 当你需要把label放在train/val两个文件夹时,解除注释
print("" + str(i) + "\t正在将 " + old_file_path + " 复制到 " + new_file_path)
# 复制文件
shutil.copyfile(old_file_path, new_file_path)
i = i + 1
# 完成提示
print("完成")