牛顿迭代法原理讲解

牛顿迭代法原理讲解

牛顿迭代法是用于求解等式方程的一种方法。

类似于求解F(x)=0的根,牛顿迭代法求解的是近似根,这个想法准确来说来源于泰勒展开式,我们知道,有些时候,我们需要求解的表达式可能非常复杂,通过一般的方法,我们很难求出它的解。
所以采用了一种近似求解的方法,就是说,我们取泰勒展开式的前几项,队原来的求解函数做一个取代,然后,求解这个取代原方程的方程的解,作为近似解。当然只对原方程做一次近似求解不行,因为第一次近似肯定不会太准确,所以还需要不断地迭代。
我们首先就要去一个值作为初始的近似值,然后去求解该点的泰勒展开近似项,然后求解根,之后,我们再以此根对原方程进行近似,然后再求解结果不断重复,迭代,最终就能求得近似解。
牛顿迭代法迭代公式如下
在这里插入图片描述
牛顿迭代法,取得是泰勒展开式的前两项,也就是线性近似,所以迭代比较快,容易计算。

你可能感兴趣的:(数学)