Python脚本调试和性能测试

第二章 Python脚本调试和性能测试

什么是调试?

调试(debugging)是一个解决代码中错误或导致软件不能正常运行的问题的过程。Python中的调试非常容易。Python调试器设置条件断点并对源码逐行调试。我们将使用Python标准库中的 pdb 模块来对我们的Python脚本进行调试。

Python 的调试技术

为更好的调试Python程序,可以使用不同的技术。我们就来看看Python调试的四种技术:

  • print()语句:这是了解具体发生情况的最简单的方式,这样我们可以检查执行的内容
  • logging:这类似于print语句但带更多的上下文信息,因此我们可以更全面的了解情况
  • pdb调试器:这是最常使用的调试技术。使用 pdb 的优势是能够在命令行、解释器以及程序中使用 pdb
  • IDE调试器:IDE有内置的调试器。这让开发者可以执行自己的代码,然后开发者可以在程序执行过程中检查代码

错误处理(异常处理)

在这一部分中我们将学习Python如何处理异常。但首先什么是异常呢?异常是在程序执行过程中发生的错误。每当错误发生时,Python会生成一个异常,使用try…except代码块来进行处理。有时异常程序无法处理,因此会导致报错信息。下面我们就来看一些异常的示例:

在你的终端中,启动python3交互控制台,我们一起来看一些异常示例:

>>> 50 / 0
Traceback (most recent call last):
  File "", line 1, in 
ZeroDivisionError: division by zero
>>> 6 + abc*5
Traceback (most recent call last):
  File "", line 1, in 
NameError: name 'abc' is not defined
>>> 'abc' + 2
Traceback (most recent call last):
  File "", line 1, in 
TypeError: Can't convert 'int' object to str implicitly
>>> import abcd
Traceback (most recent call last):
  File "", line 1, in 
ImportError: No module named 'abcd'

这就是异常的一些示例。下面我们来看如何处理这些异常。

每当Python程序中发生错误时,就会抛出异常。我们也可使用raise关键字来强制抛出异常。
下来我们来看一个处理异常的try…except代码块。在try代码块中,我们将编写可能生成异常的代码。在except代码块中,我们将编写异常的处理方式。try…except的语法如下:

try:
        statement(s)
except:
        statement(s)

一个try代码块可带有多个except语句。我们可通过在except关键字之后输入异常的名称来处理指定的异常。处理指定异常的语法如下:

try:
        statement(s)
except exception_name:
        statement(s)

下面我们创建一个exception_example.py脚本来捕获ZeroDivisionError。在脚本中编写如下代码:

a = 35
b = 37
try:
        c = a +b
        print("The value of c is:", c)
        d = b / 0
        print("The value of d is:", d)
except:
        print("Division by zero is not possible")
print("Out of try...except block")

像下面这样运行脚本,将会得到如下结果:

vagrant@python-scripting:~$ python3 exception_example.py
The value of c is: 72
Division by zero is not possible
Out of try...except block

调试器工具

Python中支持很多种调试工具:

  • winpdb
  • pydev
  • pydb
  • pdb
  • gdb
  • pyDebug

这一部分中,我们将学习pdb Python调试器。pdb是Python标准库的一部分并一直可以直接使用。

pdb调试器

pdb模块用于调试Python程序。Python程序使用pdb交互源代码调试器来调试程序。pdb设置断点并检查栈帧,列出源代码。

下面我们将学习如何使用pdb调试器。使用这一调试器有三种方式:

  • 在解释器之中
  • 通过命令行
  • 在Python脚本中
    我们将创建一个pdb_example.py脚本并在该脚本中添加如下内容:
class Student:
        def __init__(self, std):
                self.count = std

        def print_std(self):
                for i in range(self.count):
                        print(i)
                return

if __name__ == "__main__":
        Student(5).print_std()

使用这一脚本作为学习Python调试的示例,我们将了解如何启动调试器的细节。

解释器内调试

要从Python交互控制台中启动调试器,我们使用run()或runeval()。

启动python3交互控制台。运行如下命令来启动控制台:

$ python3

导入我们的pdb_example脚本名和pdb模块。下面我们将使用run(),并且我们会传入一个字符串表达式来作为run()的参数,由Python解释器自身进行运行:

>>> import pdb_example
>>> import pdb
>>> pdb.run('pdb_example.Student(5).print_std()')
> (1)()
(Pdb)

要继续调试,在(Pdb)提示符之后输入continue并按下Enter(或直接输入 h并回车)。我果想要了解这里可以使用的选项,在(Pdb)提示符之后按下两次Tab键。

在输入continue之后,我们将得到如下的输出:

>>> import pdb_example
>>> import pdb
>>> pdb.run('pdb_example.Student(5).print_std()')
> (1)()
(Pdb)

命令行调试

运行调试器最简单也最直接的方式是通过命令行。我们的程序将作为调试器的输入。我们可以这样在命令行中使用调试器:

$ python3 -m pdb pdb_example.py

加速程序运行

有很多方式来让Python程序运行得更快,比如:

  • 对认定为瓶颈的代码进行性能分析
  • 使用内置函数和库,这样解释器不用执行不同循环
  • 避免使用全局变量,因为Python在访问全局变量时速度很慢
  • 使用已有的包

总结

在本章中,我们学习了调试程序和性能分析的重要性。还学习了用于调试的不同技术。我们学习了pdb Python调试器以及如何处理异常。还学习了如何使用Python中的cProfile和timeit模块来对脚本进行性能和时耗分析。最后我们学习了如何加速脚本的运行。

下一章中,我们将学习Python中的单元测试。我们会学习如何创建和使用单元测试。

☞☞☞ 第三章-单元测试-单元测试框架的介绍

扩展阅读

  • 如何处理 Python 中的GIL问题:https://realpython.com/python-gil/
  • 查看如何在命令行中使用pdb模块:https://fedoramagazine.org/getting-started-python-debugger/

下表转自菜鸟教程:

变量名 描述
PYTHONPATH PYTHONPATH是Python搜索路径,默认我们import的模块都会从PYTHONPATH里面寻找。
PYTHONSTARTUP Python启动后,先寻找PYTHONSTARTUP环境变量,然后执行此变量指定的文件中的代码。
PYTHONCASEOK 加入PYTHONCASEOK的环境变量, 就会使python导入模块的时候不区分大小写.
PYTHONHOME 另一种模块搜索路径。它通常内嵌于的PYTHONSTARTUP或PYTHONPATH目录中,使得两个模块库更容易切换。

以下内容转自百度百科:

全局解释器锁(Global Interpreter Lock)是计算机程序设计语言解释器用于同步线程的工具,使得在同一进程内任何时刻仅有一个线程在执行。常见例子有CPython(JPython不使用GIL)与Ruby MRI。

详情

  • Python的线程是操作系统线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。
  • Python解释器进程内的多线程是合作多任务方式执行。当一个线程遇到I/O任务时,将释放GIL。计算密集型(CPU-bound)的线程在执行大约100次解释器的计步(ticks)时,将释放GIL。计步(ticks)可粗略看作Python虚拟机的指令。计步实际上与时间片长度无关。可以通过sys.setcheckinterval()设置计步长度。
  • 在单核CPU上,数百次的间隔检查才会导致一次线程切换。在多核CPU上,存在严重的线程颠簸(thrashing)。
  • Python 3.2开始使用新的GIL。
  • 可以创建独立的进程来实现并行化。

你可能感兴趣的:(python,python,开发语言)