目录
一、红黑树的概念
二、红黑树的操作
1、红黑树的定义
2、红黑树的插入
2.1、cur为红,p为红,g为黑,u存在且为红
2.2、cur为红,p为红,g为黑,u不存在/u存在且为黑
2.3、cur为红,p为红,g为黑,u不存在/u存在且为黑(变种)
3、红黑树的验证
3.1、检测一
3.2、检测二
三、红黑树的性能
四、附完整代码
本篇文章以前一篇文章《AVL树》为基础, 在阅读本篇文章之前,需要具备该文章中所讲解的旋转等知识。
红黑树,是一种二叉搜索树,但在每个节点上增加一个存储位表示节点的颜色,可以是 Red 或 Black 。 通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
红黑树的性质如下:
红黑树的性质决定了,路径中不可能出现连续的红色节点,且每条路径上都有相同数量的黑色节点。
所以红黑树中最短路径是全部都由黑色节点组成的路径,最长的路径是由红黑节点交替组成的路径。假设全部的黑色节点有 N 个,那么最短路径长度为 logN ,整棵树的节点数量在 N ~ 2N 之间,所以最长路径长度为 2logN 。
enum Colour
{
RED,
BLACK,
};
template
struct RBTreeNode
{
RBTreeNode* _left;
RBTreeNode* _right;
RBTreeNode* _parent;
pair _kv;
Colour _col;
RBTreeNode(const pair& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_col(RED)
{}
};
template
class RBTree
{
typedef RBTreeNode Node;
public:
bool Insert(const pair& kv);
private:
Node* _root = nullptr;
};
红黑树节点的结构体中多了一个表示颜色的枚举。需要注意的是,在红黑树节点的拷贝构造中,对于颜色的默认值给的是 RED 。
这是因为如果新插入的节点是黑色的,那么一定会违反红黑树的性质 4 ,即导致每条路径上的黑色节点不一致。而如果插入的节点是红色的,则不一定会使红黑树违反性质 3 ,只有在新插入的红色节点的父亲也是红色节点时,才需要进行改动。
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整。但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
cur和p均为红,违反了性质三。解决方式:将p、u改为黑,g改为红,然后把g当成cur,继续向上调整。
实现代码:
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
//情况一
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
//情况1:u存在且为红,变色处理,并继续网上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
//...
}
//...
}
情况2一定是由 2.1 的情况变换过来,并继续向上更新的,否则插入前的状态就不符合红黑树。其演变过程:
此时 c 子树一定包含一个黑节点,d、e子树只能是一个红节点。
解决方式:
解决方法:
此时,情况三变为了情况二,再使用 2.2 的方法就可以。
实现代码:
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
// u存在且为红,变色处理,并继续网上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
else //情况2与情况3:u不存在或者为黑,旋转+变色
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
// u存在且为红,变色处理,并继续网上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
else //情况2与情况3:u不存在或者为黑,旋转+变色
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
红黑树的检测分为两步:
编写测试代码:
观察到该树满足二叉搜索树。
根据红黑树的性质编写代码:
bool _Check(Node* root, int blackNum, int benchmark)
{
if (root == nullptr)
{
//cout << blackNum << endl;
if (benchmark != blackNum)
{
cout << "某条路径黑色节点的数量不相等" << endl;
return false;
}
return true;
}
if (root->_col == BLACK)
{
++blackNum;
}
if (root->_col == RED
&& root->_parent
&& root->_parent->_col == RED)
{
cout << "存在连续的红色节点" << endl;
return false;
}
return _Check(root->_left, blackNum)
&& _Check(root->_right, blackNum);
}
bool isBalance()
{
if (_root && _root->_col == RED)
{
cout << "根节点的颜色是红色" << endl;
return false;
}
int benchmark = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
++benchmark;
cur = cur->_left;
}
//是否有连续红色节点,黑色节点数量是否都相同
_Check(_root, 0, benchmark);
}
观察到满足红黑树的性质。
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是 O(log N) ,红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
enum Colour
{
RED,
BLACK,
};
template
struct RBTreeNode
{
RBTreeNode* _left;
RBTreeNode* _right;
RBTreeNode* _parent;
pair _kv;
Colour _col;
RBTreeNode(const pair& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_col(RED)
{}
};
template
class RBTree
{
typedef RBTreeNode Node;
public:
~RBTree()
{
_Destroy(_root);
_root = nullptr;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
bool Insert(const pair& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
//默认新创建的节点是红色的
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//判断节点的颜色是否违反了规则
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
// u存在且为红,变色处理,并继续网上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
else //情况2与情况3:u不存在或者为黑,旋转+变色
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
// u存在且为红,变色处理,并继续网上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
else //情况2与情况3:u不存在或者为黑,旋转+变色
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool isBalance()
{
if (_root && _root->_col == RED)
{
cout << "根节点的颜色是红色" << endl;
return false;
}
int benchmark = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
++benchmark;
cur = cur->_left;
}
//是否有连续红色节点,黑色节点数量是否都相同
_Check(_root, 0, benchmark);
}
int Height()
{
return _Height(_root);
}
private:
void _Destroy(Node* root)
{
if (root == nullptr)
{
return;
}
_Destroy(root->_left);
_Destroy(root->_right);
delete root;
}
int _Height(Node* root)
{
if (root == NULL)
return 0;
int leftH = _Height(root->_left);
int rightH = _Height(root->_right);
return leftH > rightH ? leftH + 1 : rightH + 1;
}
bool _Check(Node* root, int blackNum, int benchmark)
{
if (root == nullptr)
{
//cout << blackNum << endl;
if (benchmark != blackNum)
{
cout << "某条路径黑色节点的数量不相等" << endl;
return false;
}
return true;
}
if (root->_col == BLACK)
{
++blackNum;
}
if (root->_col == RED
&& root->_parent
&& root->_parent->_col == RED)
{
cout << "存在连续的红色节点" << endl;
return false;
}
return _Check(root->_left, blackNum, benchmark)
&& _Check(root->_right, blackNum, benchmark);
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* ppnode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (ppnode == nullptr)
{
_root = subR;
_root->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subR;
}
else
{
ppnode->_right = subR;
}
subR->_parent = ppnode;
}
}
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* ppnode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (ppnode == nullptr)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subL;
}
else
{
ppnode->_right = subL;
}
subL->_parent = ppnode;
}
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_kv.first << " ";
_InOrder(root->_right);
}
private:
Node* _root = nullptr;
};
关于红黑树的相关内容就讲到这里,希望同学们多多支持,如果有不对的地方欢迎大佬指正,谢谢!