相关文章:
【一】gym环境安装以及安装遇到的错误解决
【二】gym初次入门一学就会-简明教程
【三】gym简单画图
【四】gym搭建自己的环境,全网最详细版本,3分钟你就学会了!
【五】gym搭建自己的环境____详细定义自己myenv.py文件
【六】gym搭建自己环境升级版设计,动态障碍------强化学习
创建CartPole-v0的环境.
import gym env = gym.make('CartPole-v0') env.reset() for i in range(1000): env.render() env.step(env.action_space.sample()) # take a random action env.close()
代码含义:
- reset(self):重置环境的状态,返回观察。
- step(self, action):推进一个时间步长,返回observation, reward, done, info。
- render(self, mode=‘human’, close=False):重绘环境的一帧。默认模式一般比较友好,如弹出一个窗口。
- close(self):关闭环境,并清除内存。
注释:导入gym库,第2行创建CartPole-v0环境,并在第3行重置环境状态。在for循环中进行1000个时间步长(timestep)的控制,第5行刷新每个时间步长环境画面,第6行对当前环境状态采取一个随机动作(0或1),最后第7行循环结束后关闭仿真环境。
同时本地会渲染出一个窗口进行模拟如下图:
关于Space的说明
在上面的代码中, 我们可以看到我们每一次的action都是随机进行取值的. 事实上, 每一个环境都有action_space和observation_space.(Every environment comes with an
action_space
and anobservation_space
)以CartPole-v0来作为例子.
首先我们来看action_spaces, 这个代表可以采取的action的种类, 在CartPole-v0的例子中, 可以采取的action的种类只有两种. 我们看一下下面的示例.
import gym env = gym.make('CartPole-v0') print(env.action_space) #> Discrete(2) print(env.observation_space) #> Box(4,)
- action_space 是一个离散Discrete类型,从discrete.py源码可知,范围是一个{0,1,…,n-1} 长度为 n 的非负整数集合,在CartPole-v0例子中,动作空间表示为{0,1}。
对于observation_space. 则查看这个space的shape四个边界的上界和下界(能取到的最大值和最小值)
print(env.observation_space.high) print(env.observation_space.low) [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38] [-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]
observation_space 是一个Box类型,从box.py源码可知,表示一个 n 维的盒子,所以在上一节打印出来的observation是一个长度为 4 的数组。数组中的每个元素都具有上下界。
利用运动空间和观测空间的定义和范围,在许多仿真环境中,Box和Discrete是最常见的空间描述,在智体每次执行动作时,都属于这些空间范围内,代码示例为:
from gym import spaces space = spaces.Discrete(6) # Set with 6 elements {0, 1, 2, ..., 6} x = space.sample() print(space.contains(x)) print(space.n == 6) True True
在CartPole-v0栗子中,运动只能选择左和右,分别用{0,1}表示
对于step的详细说明
上面我们只是每次做随机的action, 为了更好的进行action, 我们需要知道每一步step之后的返回值. 事实上, step会返回四个值. 下面我们一一进行介绍.
观测 Observation (Object):当前step执行后,环境的观测(类型为对象)。例如,从相机获取的像素点,机器人各个关节的角度或棋盘游戏当前的状态等;
- 奖励 Reward (Float): 执行上一步动作(action)后,智能体( agent)获得的奖励(浮点类型),不同的环境中奖励值变化范围也不相同,但是强化学习的目标就是使得总奖励值最大;
完成 Done (Boolen): 表示是否需要将环境重置 env.reset。大多数情况下,当 Done 为True 时,就表明当前回合(episode)或者试验(tial)结束。例如当机器人摔倒或者掉出台面,就应当终止当前回合进行重置(reset);
信息 Info (Dict): 针对调试过程的诊断信息。在标准的智体仿真评估当中不会使用到这个info,
在 Gym 仿真中,每一次回合开始,需要先执行 reset() 函数,返回初始观测信息,然后根据标志位 done 的状态,来决定是否进行下一次回合。所以更恰当的方法是遵守done的标志.
import gym env = gym.make('CartPole-v0') for i_episode in range(20): observation = env.reset() for t in range(100): env.render() print(observation) action = env.action_space.sample() observation, reward, done, info = env.step(action) if done: print("Episode finished after {} timesteps".format(t+1)) break env.close()
当done 为true时,控制失败,此阶段episode 结束。可以计算每 episode 的回报就是其坚持的t+1时间,坚持的越久回报越大.在上面算法中,agent 的行为选择是随机的,平均回报为20左右。
*再次说明gym模块中环境的常用函数
gym的初始化
env = gym.make('CartPole-v0') # 定义使用gym库中的某一个环境,'CartPole-v0'可以改为其它环境 env = env.unwrapped # unwrapped是打开限制的意思
gym的各个参数的获取
env.action_space # 查看这个环境中可用的action有多少个,返回Discrete()格式 env.observation_space # 查看这个环境中observation的特征,返回Box()格式 n_actions=env.action_space.n # 查看这个环境中可用的action有多少个,返回int n_features=env.observation_space.shape[0] # 查看这个环境中observation的特征有多少个,返回int
刷新环境
env.reset() # 用于一个done后环境的重启,获取回合的第一个observation env.render() # 用于每一步后刷新环境状态 observation_, reward, done, info = env.step(action) # 获取下一步的环境、得分、检测是否完成。
实例应用
平衡杆测试代码:以AC算法为例,详细解析看下面链接分析。
import numpy as np import tensorflow as tf import gym import tensorflow.compat.v1 as tf tf.disable_v2_behavior() tf.compat.v1.disable_eager_execution() #这句话可有可无 np.random.seed(2) tf.set_random_seed(2) # reproducible # Superparameters OUTPUT_GRAPH = False MAX_EPISODE = 3000 DISPLAY_REWARD_THRESHOLD = 200 # renders environment if total episode reward is greater then this threshold MAX_EP_STEPS = 1000 # maximum time step in one episode RENDER = False # rendering wastes time GAMMA = 0.9 # reward discount in TD error LR_A = 0.001 # learning rate for actor LR_C = 0.01 # learning rate for critic env = gym.make('CartPole-v0') env.seed(1) # reproducible env = env.unwrapped N_F = env.observation_space.shape[0] N_A = env.action_space.n class Actor(object): def __init__(self, sess, n_features, n_actions, lr=0.001): self.sess = sess self.s = tf.placeholder(tf.float32, [1, n_features], "state") self.a = tf.placeholder(tf.int32, None, "act") self.td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error with tf.variable_scope('Actor'): l1 = tf.layers.dense( inputs=self.s, units=20, # number of hidden units activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(0., .1), # weights bias_initializer=tf.constant_initializer(0.1), # biases name='l1' ) self.acts_prob = tf.layers.dense( inputs=l1, units=n_actions, # output units activation=tf.nn.softmax, # get action probabilities kernel_initializer=tf.random_normal_initializer(0., .1), # weights bias_initializer=tf.constant_initializer(0.1), # biases name='acts_prob' ) with tf.variable_scope('exp_v'): log_prob = tf.log(self.acts_prob[0, self.a]) self.exp_v = tf.reduce_mean(log_prob * self.td_error) # advantage (TD_error) guided loss with tf.variable_scope('train'): self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v) # minimize(-exp_v) = maximize(exp_v) def learn(self, s, a, td): s = s[np.newaxis, :] feed_dict = {self.s: s, self.a: a, self.td_error: td} _, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict) return exp_v def choose_action(self, s): s = s[np.newaxis, :] probs = self.sess.run(self.acts_prob, {self.s: s}) # get probabilities for all actions return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel()) # return a int class Critic(object): def __init__(self, sess, n_features, lr=0.01): self.sess = sess self.s = tf.placeholder(tf.float32, [1, n_features], "state") self.v_ = tf.placeholder(tf.float32, [1, 1], "v_next") self.r = tf.placeholder(tf.float32, None, 'r') with tf.variable_scope('Critic'): l1 = tf.layers.dense( inputs=self.s, units=20, # number of hidden units activation=tf.nn.relu, # None # have to be linear to make sure the convergence of actor. # But linear approximator seems hardly learns the correct Q. kernel_initializer=tf.random_normal_initializer(0., .1), # weights bias_initializer=tf.constant_initializer(0.1), # biases name='l1' ) self.v = tf.layers.dense( inputs=l1, units=1, # output units activation=None, kernel_initializer=tf.random_normal_initializer(0., .1), # weights bias_initializer=tf.constant_initializer(0.1), # biases name='V' ) with tf.variable_scope('squared_TD_error'): self.td_error = self.r + GAMMA * self.v_ - self.v self.loss = tf.square(self.td_error) # TD_error = (r+gamma*V_next) - V_eval with tf.variable_scope('train'): self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss) def learn(self, s, r, s_): s, s_ = s[np.newaxis, :], s_[np.newaxis, :] v_ = self.sess.run(self.v, {self.s: s_}) td_error, _ = self.sess.run([self.td_error, self.train_op], {self.s: s, self.v_: v_, self.r: r}) return td_error sess = tf.Session() actor = Actor(sess, n_features=N_F, n_actions=N_A, lr=LR_A) critic = Critic(sess, n_features=N_F, lr=LR_C) # we need a good teacher, so the teacher should learn faster than the actor sess.run(tf.global_variables_initializer()) if OUTPUT_GRAPH: tf.summary.FileWriter("logs/", sess.graph) for i_episode in range(MAX_EPISODE): s = env.reset() t = 0 track_r = [] while True: if RENDER: env.render() a = actor.choose_action(s) s_, r, done, info = env.step(a) if done: r = -20 track_r.append(r) td_error = critic.learn(s, r, s_) # gradient = grad[r + gamma * V(s_) - V(s)] actor.learn(s, a, td_error) # true_gradient = grad[logPi(s,a) * td_error] s = s_ t += 1 if done or t >= MAX_EP_STEPS: ep_rs_sum = sum(track_r) if 'running_reward' not in globals(): running_reward = ep_rs_sum else: running_reward = running_reward * 0.95 + ep_rs_sum * 0.05 if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True # rendering print("episode:", i_episode, " reward:", int(running_reward)) break
更多实例教程可以参考我下面的文章在本地或者在parl中制作自己的游戏环境:
【一】-环境配置+python入门教学
【二】-Parl基础命令
【三】-Notebook、&pdb、ipdb 调试
【四】-强化学习入门简介
【五】-Sarsa&Qlearing详细讲解
【六】-DQN
【七】-Policy Gradient
【八】-DDPG
【九】-四轴飞行器仿真
都有详细原理分析和码源解释的。